Copyright © 2015 Bert N. Langford (Images may be subject to copyright. Please send feedback)
Welcome to Our Generation USA!
Below, we cover
Energy
as the source of power for business, homes, as well as autos and other motor vehicles. Sources of electrical energy include Hydroelectric, Geothermal, Oil drilling and refinement, Natural Gas, Gasoline and other auto fuel sources (including diesel and electric vehicles).
For any and all uses of Nuclear Energy, Click here
(Click here for an idea of how some "dirty" fuel sources negatively impact our Enviromont)
Energy in the United States
YouTube Video: How Much Energy Does the U.S. Use? (Atlantic Monthly 8-12-2013)
YouTube Video: The future of energy? (Cambridge University, July 30, 2012)
The United States was the 2nd largest energy consumer in 2010 (after China) considering total use.
The U.S. ranks seventh in energy consumption per-capita after Canada and a number of small nations. Not included is the significant amount of energy used overseas in the production of retail and industrial goods consumed in the U.S.
The majority of this energy is derived from fossil fuels: in 2010, data showed 25% of the nation's energy came from petroleum, 22% from coal, and 22% from natural gas.
Nuclear power supplied 8.4% and renewable energy supplied 8%, which was mainly from hydroelectric dams and biomass but also included other renewable sources such as wind power, geothermal and solar energy.
As of 2006, energy consumption had increased at a faster rate than domestic energy production over the last fifty years in the U.S. (when they were roughly equal). This difference was largely met through imports.
According to the Energy Information Administration's statistics, the per-capita energy consumption in the US has been somewhat consistent from the 1970s to today. The average has been 334 million British thermal units (BTUs) per person from 1980 to 2010.
One explanation suggested for this is that the energy required to produce the increase in US consumption of manufactured equipment, cars, and other goods has been shifted to other countries producing and transporting those goods to the US with a corresponding shift of green house gases and pollution. In comparison, the world average has increased from 63.7 in 1980 to 75 million BTUs per person in 2008.
Click on any of the following blue hyperlinks for more about Energy in the United States:
The U.S. ranks seventh in energy consumption per-capita after Canada and a number of small nations. Not included is the significant amount of energy used overseas in the production of retail and industrial goods consumed in the U.S.
The majority of this energy is derived from fossil fuels: in 2010, data showed 25% of the nation's energy came from petroleum, 22% from coal, and 22% from natural gas.
Nuclear power supplied 8.4% and renewable energy supplied 8%, which was mainly from hydroelectric dams and biomass but also included other renewable sources such as wind power, geothermal and solar energy.
As of 2006, energy consumption had increased at a faster rate than domestic energy production over the last fifty years in the U.S. (when they were roughly equal). This difference was largely met through imports.
According to the Energy Information Administration's statistics, the per-capita energy consumption in the US has been somewhat consistent from the 1970s to today. The average has been 334 million British thermal units (BTUs) per person from 1980 to 2010.
One explanation suggested for this is that the energy required to produce the increase in US consumption of manufactured equipment, cars, and other goods has been shifted to other countries producing and transporting those goods to the US with a corresponding shift of green house gases and pollution. In comparison, the world average has increased from 63.7 in 1980 to 75 million BTUs per person in 2008.
Click on any of the following blue hyperlinks for more about Energy in the United States:
Energy and its Development including an Outline of Energy Development
YouTube Video of the Top 10 Energy Sources of the Future
In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object.
Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of 1 metre against a force of 1 newton.
Common forms of energy include:
Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy (in that frame of reference), and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy.
For example, after heating an object, its increase in energy could be measured as an increase in mass, with a sensitive enough scale.
Living organisms require available energy to stay alive, such as the energy humans get from food. Human civilization requires energy to function, which it gets from energy resources such as fossil fuels, nuclear fuel, or renewable energy.
The processes of Earth's climate and ecosystem are driven by the radiant energy Earth receives from the sun and the geothermal energy contained within the earth.
Click on the following blue hyperlinks for more about Energy:
Energy development is the field of activities focused on obtaining sources of energy from natural resources.
These activities include production of conventional, alternative and renewable sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.
Societies use energy for transportation, manufacturing, illumination, heating and air conditioning, and communication, for industrial, commercial, and domestic purposes.
Energy resources may be classified as primary resources, where the resource can be used in substantially its original form, or as secondary resources, where the energy source must be converted into a more conveniently usable form.
Non-renewable resources are significantly depleted by human use, whereas renewable resources are produced by ongoing processes that can sustain indefinite human exploitation.
Thousands of people are employed in the energy industry. The conventional industry comprises the petroleum industry, the natural gas industry, the electrical power industry, and the nuclear industry.
New energy industries include the renewable energy industry, comprising alternative and sustainable manufacture, distribution, and sale of alternative fuels.
Click on any of the following blue hyperlinks for more about Energy Development:
Outline of energy development
The following outline is provided as an overview of and topical guide to energy development:
Energy development – the effort to provide sufficient primary energy sources and secondary energy forms for supply, cost, impact on air pollution and water pollution, mitigation of climate change with renewable energy.
Overview:
Energy sources:
History:
Concepts:
See also:
Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The SI unit of energy is the joule, which is the energy transferred to an object by the work of moving it a distance of 1 metre against a force of 1 newton.
Common forms of energy include:
- the kinetic energy of a moving object,
- the potential energy stored by an object's position in a force field (gravitational, electric or magnetic),
- the elastic energy stored by stretching solid objects,
- the chemical energy released when a fuel burns,
- the radiant energy carried by light,
- and the thermal energy due to an object's temperature.
Mass and energy are closely related. Due to mass–energy equivalence, any object that has mass when stationary (called rest mass) also has an equivalent amount of energy whose form is called rest energy (in that frame of reference), and any additional energy (of any form) acquired by the object above that rest energy will increase the object's total mass just as it increases its total energy.
For example, after heating an object, its increase in energy could be measured as an increase in mass, with a sensitive enough scale.
Living organisms require available energy to stay alive, such as the energy humans get from food. Human civilization requires energy to function, which it gets from energy resources such as fossil fuels, nuclear fuel, or renewable energy.
The processes of Earth's climate and ecosystem are driven by the radiant energy Earth receives from the sun and the geothermal energy contained within the earth.
Click on the following blue hyperlinks for more about Energy:
- Forms
- History
- Units of measure
- Scientific use
- Transformation
- Conservation of energy
- Energy transfer
- Thermodynamics
- See also:
Energy development is the field of activities focused on obtaining sources of energy from natural resources.
These activities include production of conventional, alternative and renewable sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.
Societies use energy for transportation, manufacturing, illumination, heating and air conditioning, and communication, for industrial, commercial, and domestic purposes.
Energy resources may be classified as primary resources, where the resource can be used in substantially its original form, or as secondary resources, where the energy source must be converted into a more conveniently usable form.
Non-renewable resources are significantly depleted by human use, whereas renewable resources are produced by ongoing processes that can sustain indefinite human exploitation.
Thousands of people are employed in the energy industry. The conventional industry comprises the petroleum industry, the natural gas industry, the electrical power industry, and the nuclear industry.
New energy industries include the renewable energy industry, comprising alternative and sustainable manufacture, distribution, and sale of alternative fuels.
Click on any of the following blue hyperlinks for more about Energy Development:
- Classification of resources
- Fossil fuels
- Nuclear
- Renewable sources
- Increased energy efficiency
- Transmission
- Storage
- History
- See also:
- development portal
- Policy:
- General:
- Feedstock:
- Other:
- Bureau of Land Management 2012 Renewable Energy Priority Projects
- Energypedia - a wiki about renewable energies in the context of development cooperation
- Hidden Health and Environmental Costs Of Energy Production and Consumption In U.S.
- RECaBS REcalculator Interactive Renewable Energy Calculator — compare renewable energy to conventional energy sources
- IEA-ECES - International Energy Agency - Energy Conservation through Energy Conservation programme.
- IEA-SHC - International Energy Agency - Solar Heating and Cooling programme.
- SDH - Solar District Heating Platform. (European Union)
Outline of energy development
The following outline is provided as an overview of and topical guide to energy development:
Energy development – the effort to provide sufficient primary energy sources and secondary energy forms for supply, cost, impact on air pollution and water pollution, mitigation of climate change with renewable energy.
Overview:
Energy sources:
- Fossil fuels:
- coal,
- petroleum,
- and natural gas
- Wind power:
- Biofuel: biomass
- Solar power:
- Marine energy:
- wave power,
- tidal power,
- and osmotic power (blue energy)
- Hydrogen,
- Geothermal power
- Hydroelectricity
- Nuclear energy
History:
Concepts:
- 1973 oil crisis
- Climate change
- Electric power transmission
- Net metering
- OPEC
- Peak oil
- Photovoltaics
- Pipeline transport
- Sustainable development
- Synthetic fuel
- United States Department of Energy
- United States Atomic Energy Commission
See also:
- List of emerging energy technologies
- RECaBS REcalculator Interactive Renewable Energy Calculator - compare renewable energy to conventional energy sources.
Energy Technology and related Engineering fields for Energy and Power
YouTube Video U.S. Department of Energy: Science for the People
Pictured below: System simulation: innovation driver for energy technologies and efficient energy transfer
Energy technology is an interdisciplinary engineering science having to do with the efficient, safe, environmentally friendly and economical extraction, conversion, transportation, storage and use of energy, targeted towards yielding high efficiency while skirting side effects on humans, nature and the environment.
For people, energy is an overwhelming need and, as a scarce resource, it has been an underlying cause of political conflicts and wars. The gathering and use of energy resources can be harmful to local ecosystems and may have global outcomes.
Interdisciplinary fields:
As an interdisciplinary science Energy technology is linked with many interdisciplinary fields in sundry, overlapping ways.
Click on any of the following blue hyperlinks for more about Energy Technology:
Energy engineering or energy systems engineering is a broad field of engineering dealing with energy efficiency, energy services, facility management, plant engineering, environmental compliance and alternative energy technologies.
Energy engineering is one of the more recent engineering disciplines to emerge. Energy engineering combines knowledge from the fields of physics, math, and chemistry with economic and environmental engineering practices. Energy engineers apply their skills to increase efficiency and further develop renewable sources of energy.
The main job of energy engineers is to find the most efficient and sustainable ways to operate buildings and manufacturing processes. Energy engineers audit the use of energy in those processes and suggest ways to improve the systems. This means suggesting advanced lighting, better insulation, more efficient heating and cooling properties of buildings.
Although an energy engineer is concerned about obtaining and using energy in the most environmentally friendly ways, their field is not limited to strictly renewable energy like hydro, solar, biomass, or geothermal. Energy engineers are also employed by the fields of oil and natural gas extraction.
Purpose:
Energy minimization is the purpose of this growing discipline. Often applied to building design, heavy consideration is given to HVAC, lighting, and refrigeration, to both reduce energy loads and increase efficiency of current systems.
Energy engineering is increasingly seen as a major step forward in meeting carbon reduction targets. Since buildings and houses consume over 40% of the United States energy, the services an energy engineer performs are in demand.
History:
Human beings have been transferring energy from one form to another since their use of fire. The efficiency of the transfer of energy is a new field. The oil crisis of 1973 and energy crisis of 1979 brought to light the need to get more work out of less energy.
The United States government passed several laws in the seventies to promote increased energy efficiency, such as United States public law 94-413, the Federal Clean Car Incentive Program.
Power Engineering:
Considered a subdivision of energy engineering, power engineering applies math and physics to the movement and transfer of energy to work in a system.
Leadership in Energy and Environmental Design:
Leadership in Energy and Environmental Design (LEED) is a program created by the United States Green Building Council (USGBC) in March 2000. LEED is a program that encourages green building and promotes sustainability in the construction of buildings and the efficiency of the utilities in the buildings.
In 2012 the United States Green Building Council asked the independent firm Booz Allen Hamilton to conduct a study on the effectiveness of LEED program. "This study confirmed that green buildings generate substantial energy savings.
From 2000–2008, green construction and renovation generated $1.3 billion in energy savings. Of that $1.3 billion, LEED-certified buildings accounted for $281 million." The study also found the summation of all green construction supported 2.4 million jobs.
Energy Efficiency:
Energy efficiency is seen two ways. The first view is that more work is done from the same amount of energy used. The other perception is that the same amount of work is accomplished with less energy used in the system. Some ways to get more work out of less energy is to "Reduce, Reuse, and Recycle" the materials used in daily life.
The advancement of technology has led to other uses of waste. Technology such as waste-to-energy facilities which convert solid wastes through the process of gasification or pyrolysis to liquid fuels to be burned.
The Environmental Protection Agency stated that the United States produced 250 million tons of municipal waste in 2010. Of that 250 million tons roughly 54% gets thrown in land fills, 33% is recycled, and 13% goes to energy recovery plants.
In European countries who pay more for fuel, such as Denmark where the price for a gallon of gas neared $10 in 2010, have more fully developed waste-to energy facilities. In 2010 Denmark sent 7% of waste to landfills, 69% was recycled, and 24% was sent to waste-to-energy facilities.
There are several other developed Western European countries that also have taken energy engineering into consideration. Germany's "Energiewende", a policy which set the goal by 2050 to meet 80% of electrical needs from renewable energy sources.
Statistics:
The median yearly salary for an energy engineering is $64,587 U.S. dollars. 83% of energy engineers are male while the remaining 17% are female. 65% of energy engineers have less than five years of experience in their profession.
Professional Organizations:
Energy engineers have one main professional organization. The Association of Energy Engineers (AEE) founded in 1977. It now has 16,000 members in 89 countries. The organizations main responsibility is to lead energy certification programs to teach individuals across the world and certify as qualified to perform the job of an energy engineer.
Education:
A bachelor’s degree is a primary requirement of becoming an energy engineer. Some energy engineers are registered Professional Engineers (P.E.); although the completion of that program is not a necessity.
Of the 16,000 energy engineers that are in the Association of Energy Engineers (AEE), 58.4% have post-graduate degrees from accredited colleges. If the engineer is not a P.E. he or she would need a Certified Energy Manager (CEM) or Certified Energy Auditor (CEA) certificate from a group like the Association of Energy Engineers (AEE).
Both CEM and CEA Certifications are recognized by the United States Department of Energy
While a student who wants to become an energy engineer does not directly need to get a degree in energy engineering, several universities across the world have established departments or centers offering energy engineering degrees, to better prepare future engineers for their career.
One of those programs is the IEP PEM Certification which is offered at Virginia Tech University. The Certified Professional Energy Manager (PEM) was created in conjunction by the Institute of Energy Professionals (IEP) and Energy University.
Since 2009, Energy University has provided energy efficiency education to more than 130,000 professionals worldwide. The program offers more than 150 courses.
See also:
Power engineering, also called power systems engineering, is a subfield of electrical engineering that deals with the generation, transmission, distribution and utilization of electric power, and the electrical apparatus connected to such systems.
Although much of the field is concerned with the problems of three-phase AC power – the standard for large-scale power transmission and distribution across the modern world – a significant fraction of the field is concerned with the conversion between AC and DC power and the development of specialized power systems such as those used in aircraft or for electric railway networks.
Power engineering draws the majority of its theoretical base from electrical engineering.
Power:
Power Engineering deals with the generation, transmission, distribution and utilization of electricity as well as the design of a range of related devices. These include transformers, electric generators, electric motors and power electronics.
Power engineers may also work on systems that do not connect to the grid. These systems are called off-grid power systems and may be used in preference to on-grid systems for a variety of reasons.
For example, in remote locations it may be cheaper for a mine to generate its own power rather than pay for connection to the grid and in most mobile applications connection to the grid is simply not practical.
Fields:
Electricity generation covers the selection, design and construction of facilities that convert energy from primary forms to electric power.
Electric power transmission requires the engineering of high voltage transmission lines and substation facilities to interface to generation and distribution systems. High voltage direct current systems are one of the elements of an electric power grid.
Electric power distribution engineering covers those elements of a power system from a substation to the end customer.
Power system protection is the study of the ways an electrical power system can fail, and the methods to detect and mitigate for such failures.
In most projects, a power engineer must coordinate with many other disciplines such as civil and mechanical engineers, environmental experts, and legal and financial personnel. Major power system projects such as a large generating station may require scores of design professionals in addition to the power system engineers.
At most levels of professional power system engineering practice, the engineer will require as much in the way of administrative and organizational skills as electrical engineering knowledge.
Professional Societies:
On both sides of the Atlantic, professional societies had long existed for civil and mechanical engineers. The IEE was founded in the UK in 1871, and the AIEE in the United States in 1884. These societies contributed to the exchange of electrical knowledge and the development of electrical engineering education.
See also:
For people, energy is an overwhelming need and, as a scarce resource, it has been an underlying cause of political conflicts and wars. The gathering and use of energy resources can be harmful to local ecosystems and may have global outcomes.
Interdisciplinary fields:
As an interdisciplinary science Energy technology is linked with many interdisciplinary fields in sundry, overlapping ways.
- Physics, for thermodynamics and nuclear physics
- Chemistry for fuel, combustion, air pollution, flue gas, battery technology and fuel cells.
- Electrical engineering
- Engineering, often for fluid energy machines such as combustion engines, turbines, pumps and compressors.
- Geography, for geothermal energy and exploration for resources.
- Mining, for petrochemical and fossil fuels.
- Agriculture and forestry, for sources of renewable energy.
- Meteorology for wind and solar energy.
- Water and Waterways, for hydropower.
- Waste management, for environmental impact.
- Transportation, for energy-saving transportation systems.
- Environmental studies, for studying the effect of energy use and production on the environment, nature and climate change.
- (Lighting Technology), for Interior and Exterior Natural as well as Artificial Lighting Design, Installations, and Energy Savings
- (Energy Cost/Benefit Analysis), for Simple Payback and Life Cycle Costing of Energy Efficiency/Conservation Measures Recommended
Click on any of the following blue hyperlinks for more about Energy Technology:
- Electrical engineering
- Thermodynamics
- Thermal and chemical energy
- Nuclear energy
- Renewable energy
- See also:
Energy engineering or energy systems engineering is a broad field of engineering dealing with energy efficiency, energy services, facility management, plant engineering, environmental compliance and alternative energy technologies.
Energy engineering is one of the more recent engineering disciplines to emerge. Energy engineering combines knowledge from the fields of physics, math, and chemistry with economic and environmental engineering practices. Energy engineers apply their skills to increase efficiency and further develop renewable sources of energy.
The main job of energy engineers is to find the most efficient and sustainable ways to operate buildings and manufacturing processes. Energy engineers audit the use of energy in those processes and suggest ways to improve the systems. This means suggesting advanced lighting, better insulation, more efficient heating and cooling properties of buildings.
Although an energy engineer is concerned about obtaining and using energy in the most environmentally friendly ways, their field is not limited to strictly renewable energy like hydro, solar, biomass, or geothermal. Energy engineers are also employed by the fields of oil and natural gas extraction.
Purpose:
Energy minimization is the purpose of this growing discipline. Often applied to building design, heavy consideration is given to HVAC, lighting, and refrigeration, to both reduce energy loads and increase efficiency of current systems.
Energy engineering is increasingly seen as a major step forward in meeting carbon reduction targets. Since buildings and houses consume over 40% of the United States energy, the services an energy engineer performs are in demand.
History:
Human beings have been transferring energy from one form to another since their use of fire. The efficiency of the transfer of energy is a new field. The oil crisis of 1973 and energy crisis of 1979 brought to light the need to get more work out of less energy.
The United States government passed several laws in the seventies to promote increased energy efficiency, such as United States public law 94-413, the Federal Clean Car Incentive Program.
Power Engineering:
Considered a subdivision of energy engineering, power engineering applies math and physics to the movement and transfer of energy to work in a system.
Leadership in Energy and Environmental Design:
Leadership in Energy and Environmental Design (LEED) is a program created by the United States Green Building Council (USGBC) in March 2000. LEED is a program that encourages green building and promotes sustainability in the construction of buildings and the efficiency of the utilities in the buildings.
In 2012 the United States Green Building Council asked the independent firm Booz Allen Hamilton to conduct a study on the effectiveness of LEED program. "This study confirmed that green buildings generate substantial energy savings.
From 2000–2008, green construction and renovation generated $1.3 billion in energy savings. Of that $1.3 billion, LEED-certified buildings accounted for $281 million." The study also found the summation of all green construction supported 2.4 million jobs.
Energy Efficiency:
Energy efficiency is seen two ways. The first view is that more work is done from the same amount of energy used. The other perception is that the same amount of work is accomplished with less energy used in the system. Some ways to get more work out of less energy is to "Reduce, Reuse, and Recycle" the materials used in daily life.
The advancement of technology has led to other uses of waste. Technology such as waste-to-energy facilities which convert solid wastes through the process of gasification or pyrolysis to liquid fuels to be burned.
The Environmental Protection Agency stated that the United States produced 250 million tons of municipal waste in 2010. Of that 250 million tons roughly 54% gets thrown in land fills, 33% is recycled, and 13% goes to energy recovery plants.
In European countries who pay more for fuel, such as Denmark where the price for a gallon of gas neared $10 in 2010, have more fully developed waste-to energy facilities. In 2010 Denmark sent 7% of waste to landfills, 69% was recycled, and 24% was sent to waste-to-energy facilities.
There are several other developed Western European countries that also have taken energy engineering into consideration. Germany's "Energiewende", a policy which set the goal by 2050 to meet 80% of electrical needs from renewable energy sources.
Statistics:
The median yearly salary for an energy engineering is $64,587 U.S. dollars. 83% of energy engineers are male while the remaining 17% are female. 65% of energy engineers have less than five years of experience in their profession.
Professional Organizations:
Energy engineers have one main professional organization. The Association of Energy Engineers (AEE) founded in 1977. It now has 16,000 members in 89 countries. The organizations main responsibility is to lead energy certification programs to teach individuals across the world and certify as qualified to perform the job of an energy engineer.
Education:
A bachelor’s degree is a primary requirement of becoming an energy engineer. Some energy engineers are registered Professional Engineers (P.E.); although the completion of that program is not a necessity.
Of the 16,000 energy engineers that are in the Association of Energy Engineers (AEE), 58.4% have post-graduate degrees from accredited colleges. If the engineer is not a P.E. he or she would need a Certified Energy Manager (CEM) or Certified Energy Auditor (CEA) certificate from a group like the Association of Energy Engineers (AEE).
Both CEM and CEA Certifications are recognized by the United States Department of Energy
While a student who wants to become an energy engineer does not directly need to get a degree in energy engineering, several universities across the world have established departments or centers offering energy engineering degrees, to better prepare future engineers for their career.
One of those programs is the IEP PEM Certification which is offered at Virginia Tech University. The Certified Professional Energy Manager (PEM) was created in conjunction by the Institute of Energy Professionals (IEP) and Energy University.
Since 2009, Energy University has provided energy efficiency education to more than 130,000 professionals worldwide. The program offers more than 150 courses.
See also:
- Association of Energy Engineers
- World Energy Engineering Congress
- Penn State Energy Engineering
- Energy Managers Association
Power engineering, also called power systems engineering, is a subfield of electrical engineering that deals with the generation, transmission, distribution and utilization of electric power, and the electrical apparatus connected to such systems.
Although much of the field is concerned with the problems of three-phase AC power – the standard for large-scale power transmission and distribution across the modern world – a significant fraction of the field is concerned with the conversion between AC and DC power and the development of specialized power systems such as those used in aircraft or for electric railway networks.
Power engineering draws the majority of its theoretical base from electrical engineering.
Power:
Power Engineering deals with the generation, transmission, distribution and utilization of electricity as well as the design of a range of related devices. These include transformers, electric generators, electric motors and power electronics.
Power engineers may also work on systems that do not connect to the grid. These systems are called off-grid power systems and may be used in preference to on-grid systems for a variety of reasons.
For example, in remote locations it may be cheaper for a mine to generate its own power rather than pay for connection to the grid and in most mobile applications connection to the grid is simply not practical.
Fields:
Electricity generation covers the selection, design and construction of facilities that convert energy from primary forms to electric power.
Electric power transmission requires the engineering of high voltage transmission lines and substation facilities to interface to generation and distribution systems. High voltage direct current systems are one of the elements of an electric power grid.
Electric power distribution engineering covers those elements of a power system from a substation to the end customer.
Power system protection is the study of the ways an electrical power system can fail, and the methods to detect and mitigate for such failures.
In most projects, a power engineer must coordinate with many other disciplines such as civil and mechanical engineers, environmental experts, and legal and financial personnel. Major power system projects such as a large generating station may require scores of design professionals in addition to the power system engineers.
At most levels of professional power system engineering practice, the engineer will require as much in the way of administrative and organizational skills as electrical engineering knowledge.
Professional Societies:
On both sides of the Atlantic, professional societies had long existed for civil and mechanical engineers. The IEE was founded in the UK in 1871, and the AIEE in the United States in 1884. These societies contributed to the exchange of electrical knowledge and the development of electrical engineering education.
See also:
- Energy economics
- Power electronics
- IEEE Power Engineering Society
- Jadavpur University, Department of Power Engineering
- Power Engineering International Magazine Articles
- Power Engineering Magazine Articles
- American Society of Power Engineers, Inc.
- National Institute for the Uniform Licensing of Power Engineer Inc.
Continental United States Power Transmission Grid:
"Hackers are attacking the electric grid" (Popular Science January 18, 2018)
YouTube Video: Watch hackers break into the US power grid*
* TechInsider (5/11/2016) A power company in the Midwest hired a group of white hat hackers known as RedTeam Security to test its defenses. We followed them around for 3 days, as they attempted to break into buildings and hack into its network, with the goal of gaining full access. And it was all much easier than you might think. Based on our experiences, it would seem that power companies need to step up their game in the fight against cyber attackers or it could be "lights out."
YouTube Video: When the power goes out: Survival tips
Pictured below: Protecting the Power Grid (CQ Researcher November 11, 2016)
Hackers are attacking the electric grid and computer scientists are trying to stop them. by Popular Science: Matt Hongoltz-Hetling January 18, 2018
"Last September, news broke that hackers had laid siege to the U.S. power grid, probing deep into dozens of energy firms, looking for weaknesses to exploit. The Department of Homeland Security issued a threat warning about an ongoing stream of malware attacks that could one day lead to a Black Sky event, crippling cellphones, erasing bank accounts, devastating hospitals, and disrupting every sector of the economy. Girding our grid (some of which dates back to 1917) could cost $500 billion—too pricey for the more than 3,200 private companies that own its hardware.
To shore up defenses, the feds are funding small and nimble teams of experts to develop security and detection patches that will (hopefully) protect the system and help it recover should the Black Hats succeed. Here are some of the grid’s biggest vulnerabilities—and the efforts to fix them.
The grid’s enemies rely on expert hackers to carry out their attacks. Most of the utilities they target lack that same expertise, defending themselves with pencil-pushers rather than professionals. That’s because there aren’t enough tech-savvy hired guns to go around. To combat this vulnerability, a federal task force is setting up mutual-assistance pacts, allowing one team of cybersaviors to help multiple companies.
A hacker’s ultimate goal is to own a master control center. Within these critical hubs, system operators rely on video-covered walls and button-filled consoles to keep the grid going. If a malignant program breaks through, it could corrupt the data that controllers rely on. So some power companies are creating duplicates. These twin nerve centers trade off grid-control duties and can also access pre-hack backups, allowing workers to replace a virus-infested system with a clean version.
72 HOURS FROM ATTACK TO SOCIETY'S TOTAL DOWNFALL:
When a Black Sky hits, engineers have three days before food spoils, medicine and water run out, batteries die, and the public loses its collective marbles. Speedy fixes are vital, but that’s difficult when the grid plugs thousands of power plants and even more customers into the same infrastructure. Companies like PJM Interconnection, which serves 13 eastern states, administer “organized markets” that help utilities obtain power from each other, making it easier to restore the grid.
1 IN 2 AMERICAN HOMES RELY ON SMART METERS:
Utilities increasingly rely on smart meters: wireless devices that relay data about homes’ power usage to companies for monitoring and billing. But like all networked devices, smart meters are vulnerable to cyber-attacks. So BAE Systems is developing a way to keep hackers off the network. Protected with heavy encryption and multiple authentication checks, it can secure these devices while utilities shore up the rest of the grid.
At each substation, older-model computers must continuously balance a three-phase current streaming through its transmission lines. Many of these outdated machines are susceptible to malicious junk code. Rather than replacing them with pricey upgrades, a second Dartmouth project is tapping linguistics theory to write programs in which only grammatically correct input is accepted, keeping hackers from interfering with the wires."
[End of Article]
___________________________________________________________________________
Continental U.S. power transmission grid
The electrical grid that powers mainland North America is divided into multiple regions. The Eastern Interconnection and the Western Interconnection are the largest.
Three other regions include the Texas Interconnection, the Quebec Interconnection, and the Alaska Interconnection.
Each region delivers 60 Hz electrical power. The regions are not directly connected or synchronized to each other, but there are some HVDC interconnections.
In the United States and Canada, national standards specify that the nominal voltage supplied to the consumer should be 120 V and allow a range of 114 V to 126 V (RMS) (−5% to +5%). Historically 110 V, 115 V and 117 V have been used at different times and places in North America. Mains power is sometimes spoken of as 110 V; however, 120 V is the nominal voltage.
Click on any of the following blue hyperlinks for more about the Continental U.S. Power Transmission Grid:
"Last September, news broke that hackers had laid siege to the U.S. power grid, probing deep into dozens of energy firms, looking for weaknesses to exploit. The Department of Homeland Security issued a threat warning about an ongoing stream of malware attacks that could one day lead to a Black Sky event, crippling cellphones, erasing bank accounts, devastating hospitals, and disrupting every sector of the economy. Girding our grid (some of which dates back to 1917) could cost $500 billion—too pricey for the more than 3,200 private companies that own its hardware.
To shore up defenses, the feds are funding small and nimble teams of experts to develop security and detection patches that will (hopefully) protect the system and help it recover should the Black Hats succeed. Here are some of the grid’s biggest vulnerabilities—and the efforts to fix them.
The grid’s enemies rely on expert hackers to carry out their attacks. Most of the utilities they target lack that same expertise, defending themselves with pencil-pushers rather than professionals. That’s because there aren’t enough tech-savvy hired guns to go around. To combat this vulnerability, a federal task force is setting up mutual-assistance pacts, allowing one team of cybersaviors to help multiple companies.
A hacker’s ultimate goal is to own a master control center. Within these critical hubs, system operators rely on video-covered walls and button-filled consoles to keep the grid going. If a malignant program breaks through, it could corrupt the data that controllers rely on. So some power companies are creating duplicates. These twin nerve centers trade off grid-control duties and can also access pre-hack backups, allowing workers to replace a virus-infested system with a clean version.
72 HOURS FROM ATTACK TO SOCIETY'S TOTAL DOWNFALL:
When a Black Sky hits, engineers have three days before food spoils, medicine and water run out, batteries die, and the public loses its collective marbles. Speedy fixes are vital, but that’s difficult when the grid plugs thousands of power plants and even more customers into the same infrastructure. Companies like PJM Interconnection, which serves 13 eastern states, administer “organized markets” that help utilities obtain power from each other, making it easier to restore the grid.
1 IN 2 AMERICAN HOMES RELY ON SMART METERS:
Utilities increasingly rely on smart meters: wireless devices that relay data about homes’ power usage to companies for monitoring and billing. But like all networked devices, smart meters are vulnerable to cyber-attacks. So BAE Systems is developing a way to keep hackers off the network. Protected with heavy encryption and multiple authentication checks, it can secure these devices while utilities shore up the rest of the grid.
At each substation, older-model computers must continuously balance a three-phase current streaming through its transmission lines. Many of these outdated machines are susceptible to malicious junk code. Rather than replacing them with pricey upgrades, a second Dartmouth project is tapping linguistics theory to write programs in which only grammatically correct input is accepted, keeping hackers from interfering with the wires."
[End of Article]
___________________________________________________________________________
Continental U.S. power transmission grid
The electrical grid that powers mainland North America is divided into multiple regions. The Eastern Interconnection and the Western Interconnection are the largest.
Three other regions include the Texas Interconnection, the Quebec Interconnection, and the Alaska Interconnection.
Each region delivers 60 Hz electrical power. The regions are not directly connected or synchronized to each other, but there are some HVDC interconnections.
In the United States and Canada, national standards specify that the nominal voltage supplied to the consumer should be 120 V and allow a range of 114 V to 126 V (RMS) (−5% to +5%). Historically 110 V, 115 V and 117 V have been used at different times and places in North America. Mains power is sometimes spoken of as 110 V; however, 120 V is the nominal voltage.
Click on any of the following blue hyperlinks for more about the Continental U.S. Power Transmission Grid:
- History
- North American Electric Reliability Corporation
- Eastern Interconnection
- Western Interconnection
- Texas Interconnection
- Quebec Interconnection
- Alaska Interconnection
- See Also: Rural Electrification Act
World Energy Consumption
YouTube Video: World Energy in 4 minutes
Pictured Below:
TOP: The world's energy consumption (2015 data)
BOTTOM: World Total Primary Energy Consumption (Courtesy of Shahzad - Own work, CC BY-SA 4.0)
World energy consumption is the total energy used by the entire human civilization. Typically measured per year, it involves all energy harnessed from every energy source applied towards humanity's endeavous across every single industrial and technological sector, across every country.
It does not include energy from food, and the extent to which direct biomass burning has been accounted for is poorly documented. Being the power source metric of civilization, World Energy Consumption has deep implications for humanity's socio-economic-political sphere.
Institutions such as the International Energy Agency (IEA), the U.S. Energy Information Administration (EIA), and the European Environment Agency record and publish energy data periodically.
Improved data and understanding of World Energy Consumption may reveal systemic trends and patterns, which could help frame current energy issues and encourage movement towards collectively useful solutions.
Closely related to energy consumption is the concept of total primary energy supply (TPES), which - on a global level - is the sum of energy production minus storage changes.
Since changes of energy storage over the year are minor, TPES values can be used as an estimator for energy consumption. However, TPES ignores conversion efficiency, overstating forms of energy with poor conversion efficiency (e.g. coal, gas and nuclear) and understating forms already accounted for in converted forms (e.g. photovoltaic or hydroelectricity).
The IEA estimates that, in 2013, total primary energy supply (TPES) was 1.575 × 1017 Wh (= 157.5 PWh, 5.67 × 1020 joules, or 13,541 Mtoe).
From 2000–2012 coal was the source of energy with the largest growth. The use of oil and natural gas also had considerable growth, followed by hydropower and renewable energy.
Renewable energy grew at a rate faster than any other time in history during this period. The demand for nuclear energy decreased, in part due to nuclear disasters (e.g. Three Mile Island 1979, Chernobyl 1986, and Fukushima 2011).
In 2011, expenditures on energy totaled over 6 trillion USD, or about 10% of the world gross domestic product (GDP). Europe spends close to one-quarter of the world's energy expenditures, North America close to 20%, and Japan 6%.
Click on any of the following for more about World Energy Consumption:
See also:
It does not include energy from food, and the extent to which direct biomass burning has been accounted for is poorly documented. Being the power source metric of civilization, World Energy Consumption has deep implications for humanity's socio-economic-political sphere.
Institutions such as the International Energy Agency (IEA), the U.S. Energy Information Administration (EIA), and the European Environment Agency record and publish energy data periodically.
Improved data and understanding of World Energy Consumption may reveal systemic trends and patterns, which could help frame current energy issues and encourage movement towards collectively useful solutions.
Closely related to energy consumption is the concept of total primary energy supply (TPES), which - on a global level - is the sum of energy production minus storage changes.
Since changes of energy storage over the year are minor, TPES values can be used as an estimator for energy consumption. However, TPES ignores conversion efficiency, overstating forms of energy with poor conversion efficiency (e.g. coal, gas and nuclear) and understating forms already accounted for in converted forms (e.g. photovoltaic or hydroelectricity).
The IEA estimates that, in 2013, total primary energy supply (TPES) was 1.575 × 1017 Wh (= 157.5 PWh, 5.67 × 1020 joules, or 13,541 Mtoe).
From 2000–2012 coal was the source of energy with the largest growth. The use of oil and natural gas also had considerable growth, followed by hydropower and renewable energy.
Renewable energy grew at a rate faster than any other time in history during this period. The demand for nuclear energy decreased, in part due to nuclear disasters (e.g. Three Mile Island 1979, Chernobyl 1986, and Fukushima 2011).
In 2011, expenditures on energy totaled over 6 trillion USD, or about 10% of the world gross domestic product (GDP). Europe spends close to one-quarter of the world's energy expenditures, North America close to 20%, and Japan 6%.
Click on any of the following for more about World Energy Consumption:
See also:
- Comparisons of life-cycle greenhouse gas emissions
- Cubic mile of oil
- Domestic Energy Consumption
- Earth's energy budget
- Electricity generation
- Electric energy consumption
- Energy development
- Energy intensity
- Energy policy
- Environmental impact of aviation
- Energy security and renewable technology
- Environmental tariff
- Feed-in Tariff
- Kardashev scale
- Peak oil
- Renewable energy commercialization
- Renewable energy by country
- Sustainable energy
- The End of Energy Obesity (book)
- A Thousand Barrels a Second: The Coming Oil Break Point and the Challenges Facing an Energy Dependent World (book)
- Regional
- Lists
- List of countries by carbon dioxide emissions
- List of countries by electricity consumption
- List of countries by electricity production
- List of countries by energy consumption and production
- List of countries by energy consumption per capita
- List of countries by energy intensity
- List of countries by greenhouse gas emissions
- List of countries by renewable electricity production
- BP global energy outlook to 2035
- BP Statistical Review of World Energy June 2017
- Energy Statistics and News from the European Union
- Official Energy Statistics from the US government
- Annual Energy Review, by the U.S. Department of Energy's Energy Information Administration (PDF)
World Energy Resources and Energy Development, including a List of Energy Resources
YouTube Video: Different Sources of Energy, Using Energy Responsibly
YouTube Video: Sustainability and Resource Depletion: Survival Challenge for the 21st Century
PICTURED BELOW:
TOP: Makeup of Known World Oil Supply
BOTTOM: Legend: World total primary energy production in quadrillion Btu. (approx. figures in parenthesis for
Click here for a List of Energy Resources.
World energy resources are the estimated maximum capacity for energy production given all available resources on Earth. They can be divided by type into fossil fuel, nuclear fuel and renewable resources as identified below: ___________________________________________________________________________
Energy development is the field of activities focused on obtaining sources of energy from natural resources.
These activities include production of conventional, alternative and renewable sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.
Societies use energy for transportation, manufacturing, illumination, heating and air conditioning, and communication, for industrial, commercial, and domestic purposes. Energy resources may be classified as primary resources, where the resource can be used in substantially its original form, or as secondary resources, where the energy source must be converted into a more conveniently usable form.
Non-renewable resources are significantly depleted by human use, whereas renewable resources are produced by ongoing processes that can sustain indefinite human exploitation.
Thousands of people are employed in the energy industry. The conventional industry comprises the petroleum industry, the natural gas industry, the electrical power industry, and the nuclear industry. New energy industries include the renewable energy industry, comprising alternative and sustainable manufacture, distribution, and sale of alternative fuels.
Click on any of the following blue hyperlinks for more about Energy Development:
World energy resources are the estimated maximum capacity for energy production given all available resources on Earth. They can be divided by type into fossil fuel, nuclear fuel and renewable resources as identified below: ___________________________________________________________________________
Energy development is the field of activities focused on obtaining sources of energy from natural resources.
These activities include production of conventional, alternative and renewable sources of energy, and for the recovery and reuse of energy that would otherwise be wasted. Energy conservation and efficiency measures reduce the demand for energy development, and can have benefits to society with improvements to environmental issues.
Societies use energy for transportation, manufacturing, illumination, heating and air conditioning, and communication, for industrial, commercial, and domestic purposes. Energy resources may be classified as primary resources, where the resource can be used in substantially its original form, or as secondary resources, where the energy source must be converted into a more conveniently usable form.
Non-renewable resources are significantly depleted by human use, whereas renewable resources are produced by ongoing processes that can sustain indefinite human exploitation.
Thousands of people are employed in the energy industry. The conventional industry comprises the petroleum industry, the natural gas industry, the electrical power industry, and the nuclear industry. New energy industries include the renewable energy industry, comprising alternative and sustainable manufacture, distribution, and sale of alternative fuels.
Click on any of the following blue hyperlinks for more about Energy Development:
- Classification of resources
- Fossil fuels
- Nuclear
- Renewable sources
- Increased energy efficiency
- Transmission
- Storage
- History
- Policy
- Energy policy,
- Energy policy of the United States,
- Energy policy of China,
- Energy policy of India,
- Energy policy of the European Union,
- Energy policy of the United Kingdom,
- Energy policy of Russia,
- Energy policy of Brazil,
- Energy policy of Canada,
- Energy policy of the Soviet Union,
- Energy Industry Liberalization and Privatization (Thailand)
- General
- Feedstock:
- Other:
- Energypedia - a wiki about renewable energies in the context of development cooperation
- Hidden Health and Environmental Costs Of Energy Production and Consumption In U.S.
- RECaBS REcalculator Interactive Renewable Energy Calculator — compare renewable energy to conventional energy sources
- IEA-ECES - International Energy Agency - Energy Conservation through Energy Conservation programme.
- IEA-SHC - International Energy Agency - Solar Heating and Cooling programme.
- SDH - Solar District Heating Platform. (European Union)
How We Get Our Electricity. including: YouTube Video: Energy 101: Electricity Generation
Pictured: Electrical Power Grid from Power Station to Home or Business
Pictured: Electrical Power Grid from Power Station to Home or Business
In the Following Three Topics, we will provide you with an overview and then details of how Americans receive their electrical power:
1) A power station, also referred to as a generating station, power plant, powerhouse, or generating plant, is an industrial facility for the generation of electric power. Most power stations contain one or more generators, a rotating machine that converts mechanical power into electrical power. The relative motion between a magnetic field and a conductor creates an electrical current.
The energy source harnessed to turn the generator varies widely. Most power stations in the world burn fossil fuels such as coal, oil, and natural gas to generate electricity. Others use nuclear power, but there is an increasing use of cleaner renewable sources such as solar, wind, wave and hydroelectric.
The Following Provides an Overview of how Power Stations (above) provide electricity throughout the United States, and directly to your home:
2) An electrical grid is an interconnected network for delivering electricity from suppliers to consumers. It consists of generating stations that produce electrical power, high-voltage transmission lines that carry power from distant sources to demand centers, and distribution lines that connect individual customers.
Power stations may be located near a fuel source, at a dam site, or to take advantage of renewable energy sources, and are often located away from heavily populated areas. They are usually quite large to take advantage of the economies of scale. The electric power which is generated is stepped up to a higher voltage at which it connects to the electric power transmission network.
The bulk power transmission network will move the power long distances, sometimes across international boundaries, until it reaches its wholesale customer (usually the company that owns the local electric power distribution network).
On arrival at a substation, the power will be stepped down from a transmission level voltage to a distribution level voltage. As it exits the substation, it enters the distribution wiring. Finally, upon arrival at the service location, the power is stepped down again from the distribution voltage to the required service voltage(s).
3) Energy Sources in the United States:
The United States was the 2nd largest energy consumer of energy in 2010 (after China) considering total use.
The U.S. ranks seventh in energy consumption per-capita after Canada and a number of small nations. Not included is the significant amount of energy used overseas in the production of retail and industrial goods consumed in the U.S.
Breakdown of Electricity Sources:
The majority of this energy is derived from fossil fuels: in 2010, data showed 25% of the nation's energy came from petroleum, 22% from coal, and 22% from natural gas.
Nuclear power supplied 8.4% and renewable energy supplied 8%, which was mainly from hydroelectric dams and biomass but also included other renewable sources such as wind power, geothermal and solar energy.
Energy consumption has increased at a faster rate than domestic energy production over the last fifty years in the U.S. (when they were roughly equal). This difference is now largely met through imports.
According to the Energy Information Administration's statistics, the per-capita energy consumption in the US has been somewhat consistent from the 1970s to today. The average has been 334 million British thermal units (BTUs) per person from 1980 to 2010.
One explanation suggested for this is that the energy required to produce the increase in US consumption of manufactured equipment, cars, and other goods has been shifted to other countries producing and transporting those goods to the US with a corresponding shift of green house gases and pollution.
In comparison, the world average has increased from 63.7 in 1980 to 75 million BTU's per person in 2008. On the other hand, US "off-shoring" of manufacturing is sometimes exaggerated: US domestic manufacturing has grown by 50% since 1980.
Click on any of the hyperlinks below for further amplification:
1) A power station, also referred to as a generating station, power plant, powerhouse, or generating plant, is an industrial facility for the generation of electric power. Most power stations contain one or more generators, a rotating machine that converts mechanical power into electrical power. The relative motion between a magnetic field and a conductor creates an electrical current.
The energy source harnessed to turn the generator varies widely. Most power stations in the world burn fossil fuels such as coal, oil, and natural gas to generate electricity. Others use nuclear power, but there is an increasing use of cleaner renewable sources such as solar, wind, wave and hydroelectric.
The Following Provides an Overview of how Power Stations (above) provide electricity throughout the United States, and directly to your home:
2) An electrical grid is an interconnected network for delivering electricity from suppliers to consumers. It consists of generating stations that produce electrical power, high-voltage transmission lines that carry power from distant sources to demand centers, and distribution lines that connect individual customers.
Power stations may be located near a fuel source, at a dam site, or to take advantage of renewable energy sources, and are often located away from heavily populated areas. They are usually quite large to take advantage of the economies of scale. The electric power which is generated is stepped up to a higher voltage at which it connects to the electric power transmission network.
The bulk power transmission network will move the power long distances, sometimes across international boundaries, until it reaches its wholesale customer (usually the company that owns the local electric power distribution network).
On arrival at a substation, the power will be stepped down from a transmission level voltage to a distribution level voltage. As it exits the substation, it enters the distribution wiring. Finally, upon arrival at the service location, the power is stepped down again from the distribution voltage to the required service voltage(s).
3) Energy Sources in the United States:
The United States was the 2nd largest energy consumer of energy in 2010 (after China) considering total use.
The U.S. ranks seventh in energy consumption per-capita after Canada and a number of small nations. Not included is the significant amount of energy used overseas in the production of retail and industrial goods consumed in the U.S.
Breakdown of Electricity Sources:
The majority of this energy is derived from fossil fuels: in 2010, data showed 25% of the nation's energy came from petroleum, 22% from coal, and 22% from natural gas.
Nuclear power supplied 8.4% and renewable energy supplied 8%, which was mainly from hydroelectric dams and biomass but also included other renewable sources such as wind power, geothermal and solar energy.
Energy consumption has increased at a faster rate than domestic energy production over the last fifty years in the U.S. (when they were roughly equal). This difference is now largely met through imports.
According to the Energy Information Administration's statistics, the per-capita energy consumption in the US has been somewhat consistent from the 1970s to today. The average has been 334 million British thermal units (BTUs) per person from 1980 to 2010.
One explanation suggested for this is that the energy required to produce the increase in US consumption of manufactured equipment, cars, and other goods has been shifted to other countries producing and transporting those goods to the US with a corresponding shift of green house gases and pollution.
In comparison, the world average has increased from 63.7 in 1980 to 75 million BTU's per person in 2008. On the other hand, US "off-shoring" of manufacturing is sometimes exaggerated: US domestic manufacturing has grown by 50% since 1980.
Click on any of the hyperlinks below for further amplification:
- History
- Current consumption
- Renewable energy
- Oil
- Electrical energy
- Fossil-fuel equivalency
- International cooperation
- See also:
- Carter Doctrine
- The Climate Registry
- Efficient energy use
- Energy conservation
- Energy development
- Energy conservation in the United States
- Energy policy of the United States
- Electricity sector of the United States
- Energy security
- World energy resources
- World energy consumption
- List of countries by energy consumption and production
- List of countries by energy consumption per capita
- List of U.S. states by electricity production from renewable sources
- Petroleum in the United States
- Individual states:
Conservation of Energy Resources including in theUnited States
YouTube Video about Energy Conservation presented by National Geographic("Renewable energy technologies have come a long way. But public attitudes lag far behind.")
YouTube Video about Energy Conservation presented by National Geographic("Renewable energy technologies have come a long way. But public attitudes lag far behind.")
Energy conservation refers to reducing energy consumption through using less of an energy service. Energy conservation differs from efficient energy use, which refers to using less energy for a constant service. Driving less is an example of energy conservation. Driving the same amount with a higher mileage vehicle is an example of energy efficiency. Energy conservation and efficiency are both energy reduction techniques. Energy conservation is sometimes known as sufficiency.
Even though energy conservation reduces energy services, it can result in increased environmental quality, national security, personal financial security and higher savings. It is at the top of the sustainable energy hierarchy. It also lowers energy costs by preventing future resource depletion.
Some countries employ energy or carbon taxes to motivate energy users to reduce their consumption. Carbon taxes can allow consumption to shift to nuclear power and other alternatives that carry a different set of environmental side effects and limitations.
Meanwhile, taxes on all energy consumption stand to reduce energy use across the board, while reducing a broader array of environmental consequences arising from energy production. The State of California employs a tiered energy tax whereby every consumer receives a baseline energy allowance that carries a low tax. As usage increases above that baseline, the tax is increasing drastically. Such programs aim to protect poorer households while creating a larger tax burden for high energy consumers.
The United States is the second-largest single consumer of energy in the world. The U.S. Department of Energy categorizes national energy use in four broad sectors:
1) Transportation:
In the United States, suburban infrastructure evolved during an age of relatively easy access to fossil fuels, which has led to transportation-dependent systems of living. Zoning reforms that allow greater urban density as well as designs for walking and bicycling can greatly reduce energy consumed for transportation. The use of telecommuting by major corporations is a significant opportunity to conserve energy, as many Americans now work in service jobs that enable them to work from home instead of commuting to work each day
The transportation sector includes all vehicles used for personal or freight transportation. Of the energy used in this sector, approximately 65% is consumed by gasoline-powered vehicles, primarily personally owned. Diesel-powered transport (trains, merchant ships, heavy trucks, etc.) consumes about 20%, and air traffic consumes most of the remaining 15%.
The two oil supply crisis of the 1970s spurred the creation, in 1975, of the federal Corporate Average Fuel Economy (CAFE) program, which required auto manufacturers to meet progressively higher fleet fuel economy targets. The next decade saw dramatic improvements in fuel economy, mostly the result of reductions in vehicle size and weight which originated in the late 1970s, along with the transition to front wheel drive.
These gains eroded somewhat after 1990 due to the growing popularity of sport utility vehicles, pickup trucks and minivans, which fall under the more lenient "light truck" CAFE standard.
In addition to the CAFE program, the U.S. government has tried to encourage better vehicle efficiency through tax policy. Since 2002, taxpayers have been eligible for income tax credits for gas/electric hybrid vehicles. A "gas-guzzler" tax has been assessed on manufacturers since 1978 for cars with exceptionally poor fuel economy. While this tax remains in effect, it generates very little revenue as overall fuel economy has improved.
Another focus in gasoline conservation is reducing the number of miles driven. An estimated 40% of American automobile use is associated with daily commuting. Many urban areas offer subsidized public transportation to reduce commuting traffic, and encourage carpooling by providing designated high-occupancy vehicle lanes and lower tolls for cars with multiple riders.
In recent years telecommuting has also become a viable alternative to commuting for some jobs, but in 2003 only 3.5% of workers were telecommuters. Ironically, hundreds of thousands of American and European workers have been replaced by workers in Asia who telecommute from thousands of miles away.
Fuel economy-maximizing behaviors also help reduce fuel consumption. Among the most effective are moderate (as opposed to aggressive) driving, driving at lower speeds, using cruise control, and turning off a vehicle's engine at stops rather than idling.
A vehicle's gas mileage decreases rapidly with increasing highway speeds, normally above 55 miles per hour (though the exact number varies by vehicle). This is because aerodynamic forces are proportionally related to the square of an object's speed (when the speed is doubled, drag quadruples).
According to the U.S. Department of Energy (DOE), as a rule of thumb, each 5 mph (8.0 km/h) you drive over 60 mph (97 km/h) is similar to paying an additional $0.30 per gallon for gas. The exact speed at which a vehicle achieves its highest efficiency varies based on the vehicle's drag coefficient, frontal area, surrounding air speed, and the efficiency and gearing of a vehicle's drive train and transmission.
Energy usage in transportation and residential sectors (about half of U.S. energy consumption) is largely controlled by individual domestic consumers. Commercial and industrial energy expenditures are determined by businesses entities and other facility managers. National energy policy has a significant effect on energy usage across all four sectors.
2) Residential and Consumer Sector:
The residential sector refers to all private residences, including single-family homes, apartments, manufactured homes and dormitories. Energy use in this sector varies significantly across the country, due to regional climate differences and different regulation. On average, about half of the energy used in U.S. homes is expended on space conditioning (i.e. heating and cooling).
The efficiency of furnaces and air conditioners has increased steadily since the energy crises of the 1970s. The 1987 National Appliance Energy Conservation Act authorized the Department of Energy to set minimum efficiency standards for space conditioning equipment and other appliances each year, based on what is "technologically feasible and economically justified". Beyond these minimum standards, the Environmental Protection Agency (EPA) awards the Energy Star designation to appliances that exceed industry efficiency averages by an EPA-specified percentage.
Despite technological improvements, many American lifestyle changes have put higher demands on heating and cooling resources. The average size of homes built in the United States has increased significantly, from 1,500 sq ft (140 m2) in 1970 to 2,300 sq ft (210 m2) in 2005. The single-person household has become more common, as has central air conditioning: 23% of households had central air conditioning in 1978, that figure rose to 55% by 2001.
As furnace efficiency gets higher, appropriate matching of equipment size to distribution system capacity and building load becomes more critical to optimizing equipment ability to maximize efficient operation. Installing much lower output high efficiency replacement equipment offers opportunity for huge comfort and savings gains, but improving the building envelope through air sealing and adding more insulation, advanced windows, etc., should be explored concurrently or before replacement equipment design stage.
The passive house approach produces super-insulated buildings that approach zero net energy consumption. Improving the building envelope can also be cheaper than replacing a furnace or air conditioner.
Even lower cost improvements include weatherization, which is frequently subsidized by utilities or state/federal tax credits, as are programmable thermostats. Consumers have also been urged to adopt a wider indoor temperature range (e.g. 65 °F (18 °C) in the winter, 80 °F (27 °C) in the summer).
One underutilized, but potentially very powerful means to reduce household energy consumption is to provide real-time feedback to homeowners so they can effectively alter their energy using behavior. Low cost energy feedback displays, such as the Energy Detective or "Wattvision", have become available. A study of a similar device deployed in 500 homes in Ontario, Canada, by Hydro One showed an average 6.5% drop in total electricity use when compared with a similarly sized control group.
Standby power used by consumer electronics and appliances while they are turned off accounts for an estimated 5 to 10% of household electricity consumption, adding an estimated $3 billion to annual energy costs in the USA. "In the average home, 75% of the electricity used to power home electronics is consumed while the products are turned off."
Home energy consumption averages:
Energy usage in some homes may vary widely from these averages. For example, milder regions such as the Southern U.S. and Pacific coast of the USA need far less energy for space conditioning than New York City or Chicago.
On the other hand, air conditioning energy use can be quite high in hot-arid regions (Southwest) and hot-humid zones (Southeast) In milder climates such as San Diego, lighting energy may easily consume up to 40% of total energy. Certain appliances such as a waterbed, hot tub, or pre-1990 refrigerator use significant amounts of electricity.
However, recent trends in home entertainment equipment can make a large difference in household energy use. For instance a 50" LCD television (average on-time= 6 hours a day) may draw 300 Watts less than a similarly sized plasma system. In most residences no single appliance dominates, and any conservation efforts must be directed to numerous areas in order to achieve substantial energy savings.
However, Ground, Air and Water Source Heat Pump systems, solar heating systems and evaporative coolers are among the more energy efficient, environmentally clean, and cost-effective space conditioning and domestic hot water systems available (Environmental Protection Agency), and can achieve reductions in energy consumptions of up to 69%
Building Design:
One of the primary ways to improve energy conservation in buildings is to use an energy audit. An energy audit is an inspection and analysis of energy use and flows for energy conservation in a building, process or system to reduce the amount of energy input into the system without negatively affecting the output(s).
This is normally accomplished by trained professionals and can be part of some of the national programs discussed above. In addition, recent development of smartphone apps enable homeowners to complete relatively sophisticated energy audits themselves.
Building technologies and smart meters can allow energy users, business and residential, to see graphically the impact their energy use can have in their workplace or homes. Advanced real-time energy metering is able to help people save energy by their actions.
In passive solar building design, windows, walls, and floors are made to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design or climatic design because, unlike active solar heating systems, it doesn't involve the use of mechanical and electrical devices.
The key to designing a passive solar building is to best take advantage of the local climate. Elements to be considered include window placement and glazing type, thermal insulation, thermal mass, and shading. Passive solar design techniques can be applied most easily to new buildings, but existing buildings can be retrofitted.
Consumer Products:
Consumers are often poorly informed of the savings of energy efficient products. A prominent example of this is the energy savings that can be made by replacing an incandescent light bulb with a more modern alternative. When purchasing light bulbs, many consumers opt for cheap incandescent bulbs, failing to take into account their higher energy costs and lower lifespans when compared to modern compact fluorescent and LED bulbs.
Although these energy-efficient alternatives have a higher upfront cost, their long lifespan and low energy use can save consumers a considerable amount of money. The price of LEDs has also been steadily decreasing in the past five years, due to improvement of the semiconductor technology.
Many LED bulbs on the market qualify for utility rebates that further reduce the price of purchase to the consumer.[11] Estimates by The U.S. Department of Energy state that widespread adoption of LED lighting over the next 20 years could result in about $265 billion worth of savings in United States energy costs.
The research one must put into conserving energy is often too time consuming and costly for the average consumer, when there are cheaper products and technology available using today's fossil fuels.
Some governments and NGOs are attempting to reduce this complexity with ecolabels that make differences in energy efficiency easy to research while shopping.
To provide the kind of information and support people need to invest money, time and effort in energy conservation, it is important to understand and link to people's topical concerns.
For instance, some retailers argue that bright lighting stimulates purchasing. However, health studies have demonstrated that headache, stress, blood pressure, fatigue and worker error all generally increase with the common over-illumination present in many workplace and retail settings. It has been shown that natural daylighting increases productivity levels of workers, while reducing energy consumption.
In warm climates where air conditioning is used, any household device that gives off heat will result in a larger load on the cooling system. Items such as stove, dish washer, clothes dryer, hot water and incandescent lighting all add heat to the home. Low power or insulated versions of these devices give off less heat for the air conditioning to remove. The air conditioning system can also improve in efficiency by using a heat sink that is cooler than the standard air heat exchanger such as geothermal or water.
In cold climates heating air and water is a major demand on household energy use. By investing in newer technologies in the home, significant energy reductions are possible. Heat pumps are a more efficient alternative to using electrical resistance heaters for warming air or water.
A variety of efficient clothes dryers are available, and the classic clothes line requires no energy, only time.
Natural gas condensing boilers and hot air furnaces increase efficiency over standard hot flue models. New construction implementing heat exchangers can capture heat from waste water or exhaust air in bathrooms, laundry and kitchens.
In both warm and cold climate extremes, airtight thermal insulated construction will largely determine the efficiency of a home. Insulation is added to minimize the flow of heat to or from the home, but can be labor-intensive to retrofit to an existing home.
3) Commercial sector:
The commercial sector consists of retail stores, offices (business and government), restaurants, schools and other workplaces. Energy in this sector has the same basic end uses as the residential sector, in slightly different proportions. Space conditioning is again the single biggest consumption area, but it represents only about 30% of the energy use of commercial buildings.
Lighting, at 25%, plays a much larger role than it does in the residential sector. Lighting is also generally the most wasteful component of commercial use. A number of case studies indicate that more efficient lighting and elimination of over-illumination can reduce lighting energy by approximately fifty percent in many commercial buildings.
Commercial buildings can greatly increase energy efficiency by thoughtful design, with today's building stock being very poor examples of the potential of systematic (not expensive) energy efficient design (Steffy, 1997).
Commercial buildings often have professional management, allowing centralized control and coordination of energy conservation efforts. As a result, fluorescent lighting (about four times as efficient as incandescent) is the standard for most commercial space, although it may produce certain adverse health effects.
Potential health concerns can be mitigated by using newer fixtures with electronic ballasts rather than older magnetic ballasts. As most buildings have consistent hours of operation, programmed thermostats and lighting controls are common.
However, too many companies believe that merely having a computer controlled Building automation system guarantees energy efficiency. As an example one large company in Northern California boasted that it was confident its state of the art system had optimized space heating.
A more careful analysis by Lumina Technologies showed the system had been given programming instructions to maintain constant 24‑hour temperatures in the entire building complex. This instruction caused the injection of nighttime heat into vacant buildings when the daytime summer temperatures would often exceed 90 °F (32 °C). This mis-programming was costing the company over $130,000 per year in wasted energy (Lumina Technologies, 1997). Many corporations and governments also require the Energy Star rating for any new equipment purchased for their buildings.
Solar heat loading through standard window designs usually leads to high demand for air conditioning in summer months. An example of building design overcoming this excessive heat loading is the Dakin Building in Brisbane, California, where fenestration was designed to achieve an angle with respect to sun incidence to allow maximum reflection of solar heat; this design also assisted in reducing interior over-illumination to enhance worker efficiency and comfort.
Recent advances include use of occupancy sensors to turn off lights when spaces are unoccupied, and photo sensors to dim or turn off electric lighting when natural light is available.
In air conditioning systems, overall equipment efficiencies have increased as energy codes and consumer information have begun to emphasise year round performance rather than just efficiency ratings at maximum output. Controllers that automatically vary the speeds of fans, pumps, and compressors have radically improved part-load performance of those devices.
For space or water heating, electric heat pumps consume roughly half the energy required by electric resistance heaters. Natural gas heating efficiencies have improved through use of condensing furnaces and boilers, in which the water vapor in the flue gas is cooled to liquid form before it is discharged, allowing the heat of condensation to be used. In buildings where high levels of outside air are required, heat exchangers can capture heat from the exhaust air to preheat incoming supply air.
A company in Florida tackled the issue of both energy-conservation and enhancing its workplace environment by implementing a conveyor system that is 40-60% quieter than traditional systems, emitting a noise level of only 55-50 decibels, equivalent to a soft-rock radio station. Lighting was addressed by not only programming the lighting console so that isolated lights could be switched on and off in designated areas of the warehouse, but also by enhancing natural lighting through the use of skylights and a high-gloss floor.
4) Industrial Sector:
The industrial sector represents all production and processing of goods, including manufacturing, construction, farming, water management and mining.
Increasing costs have forced energy-intensive industries to make substantial efficiency improvements in the past 30 years. For example, the energy used to produce steel and paper products has been cut 40% in that time frame, while petroleum/aluminum refining and cement production have reduced their usage by about 25%. These reductions are largely the result of recycling waste material and the use of cogeneration equipment for electricity and heating.
Another example for efficiency improvements is the use of products made of High temperature insulation wool (HTIW) which enables predominantly industrial users to operate thermal treatment plants at temperatures between 800 and 1400 °C.
In these high-temperature applications, the consumption of primary energy and the associated CO2 emissions can be reduced by up to 50% compared with old fashioned industrial installations. The application of products made of High temperature insulation Wool is becoming increasingly important against the background of the dramatic rising cost of energy.
U.S. agriculture has doubled farm energy efficiency in the last 25 years. The energy required for delivery and treatment of fresh water often constitutes a significant percentage of a region's electricity and natural gas usage (an estimated 20% of California's total energy use is water-related).
In light of this, some local governments have worked toward a more integrated approach to energy and water conservation efforts. To conserve energy, some industries have begun using solar panels to heat their water.
Unlike the other sectors, total energy use in the industrial sector has declined in the last decade. While this is partly due to conservation efforts, it is also a reflection of the growing trend for U.S. companies to move manufacturing operations overseas.
Government Incentives and Initiatives:
Part B of Title III of the Energy Policy and Conservation Act established the Energy Conservation Program for Consumer Products other than Automobiles, which gives the Department of Energy the "authority to develop, revise, and implement minimum energy conservation standards for appliances and equipment."
As currently implemented, the Department of Energy enforces test procedures and minimum standards for more than 50 products covering residential, commercial and industrial, lighting, and plumbing applications.
The Energy Policy Act of 2005 included incentives which provide a tax credit of 30% of the cost of the new item with a $500 aggregate limit; the program was initially set to expire at the end of 2007 but was extended to 2010 and the aggregate limit increased to $1,500 by the Energy Improvement and Extension Act of 2008 and The American Recovery and Reinvestment Act of 2009, when it will expire.
By Executive Order 13514, U.S. President Barack Obama mandated that by 2015, 15% of existing Federal buildings conform to new energy efficiency standards and 100% of all new Federal buildings be Zero-Net-Energy by 2030.
The states and local areas (e.g., cities or counties) have various initiatives, and the U.S. Department of Energy funded a database known as DSIRE which provides information on these initiatives. The state of Maryland has set a target of reducing its electricity usage by 15% from 2008 to 2015.
See also:
Even though energy conservation reduces energy services, it can result in increased environmental quality, national security, personal financial security and higher savings. It is at the top of the sustainable energy hierarchy. It also lowers energy costs by preventing future resource depletion.
Some countries employ energy or carbon taxes to motivate energy users to reduce their consumption. Carbon taxes can allow consumption to shift to nuclear power and other alternatives that carry a different set of environmental side effects and limitations.
Meanwhile, taxes on all energy consumption stand to reduce energy use across the board, while reducing a broader array of environmental consequences arising from energy production. The State of California employs a tiered energy tax whereby every consumer receives a baseline energy allowance that carries a low tax. As usage increases above that baseline, the tax is increasing drastically. Such programs aim to protect poorer households while creating a larger tax burden for high energy consumers.
The United States is the second-largest single consumer of energy in the world. The U.S. Department of Energy categorizes national energy use in four broad sectors:
- transportation,
- residential,
- commercial,
- and industrial.
1) Transportation:
In the United States, suburban infrastructure evolved during an age of relatively easy access to fossil fuels, which has led to transportation-dependent systems of living. Zoning reforms that allow greater urban density as well as designs for walking and bicycling can greatly reduce energy consumed for transportation. The use of telecommuting by major corporations is a significant opportunity to conserve energy, as many Americans now work in service jobs that enable them to work from home instead of commuting to work each day
The transportation sector includes all vehicles used for personal or freight transportation. Of the energy used in this sector, approximately 65% is consumed by gasoline-powered vehicles, primarily personally owned. Diesel-powered transport (trains, merchant ships, heavy trucks, etc.) consumes about 20%, and air traffic consumes most of the remaining 15%.
The two oil supply crisis of the 1970s spurred the creation, in 1975, of the federal Corporate Average Fuel Economy (CAFE) program, which required auto manufacturers to meet progressively higher fleet fuel economy targets. The next decade saw dramatic improvements in fuel economy, mostly the result of reductions in vehicle size and weight which originated in the late 1970s, along with the transition to front wheel drive.
These gains eroded somewhat after 1990 due to the growing popularity of sport utility vehicles, pickup trucks and minivans, which fall under the more lenient "light truck" CAFE standard.
In addition to the CAFE program, the U.S. government has tried to encourage better vehicle efficiency through tax policy. Since 2002, taxpayers have been eligible for income tax credits for gas/electric hybrid vehicles. A "gas-guzzler" tax has been assessed on manufacturers since 1978 for cars with exceptionally poor fuel economy. While this tax remains in effect, it generates very little revenue as overall fuel economy has improved.
Another focus in gasoline conservation is reducing the number of miles driven. An estimated 40% of American automobile use is associated with daily commuting. Many urban areas offer subsidized public transportation to reduce commuting traffic, and encourage carpooling by providing designated high-occupancy vehicle lanes and lower tolls for cars with multiple riders.
In recent years telecommuting has also become a viable alternative to commuting for some jobs, but in 2003 only 3.5% of workers were telecommuters. Ironically, hundreds of thousands of American and European workers have been replaced by workers in Asia who telecommute from thousands of miles away.
Fuel economy-maximizing behaviors also help reduce fuel consumption. Among the most effective are moderate (as opposed to aggressive) driving, driving at lower speeds, using cruise control, and turning off a vehicle's engine at stops rather than idling.
A vehicle's gas mileage decreases rapidly with increasing highway speeds, normally above 55 miles per hour (though the exact number varies by vehicle). This is because aerodynamic forces are proportionally related to the square of an object's speed (when the speed is doubled, drag quadruples).
According to the U.S. Department of Energy (DOE), as a rule of thumb, each 5 mph (8.0 km/h) you drive over 60 mph (97 km/h) is similar to paying an additional $0.30 per gallon for gas. The exact speed at which a vehicle achieves its highest efficiency varies based on the vehicle's drag coefficient, frontal area, surrounding air speed, and the efficiency and gearing of a vehicle's drive train and transmission.
Energy usage in transportation and residential sectors (about half of U.S. energy consumption) is largely controlled by individual domestic consumers. Commercial and industrial energy expenditures are determined by businesses entities and other facility managers. National energy policy has a significant effect on energy usage across all four sectors.
2) Residential and Consumer Sector:
The residential sector refers to all private residences, including single-family homes, apartments, manufactured homes and dormitories. Energy use in this sector varies significantly across the country, due to regional climate differences and different regulation. On average, about half of the energy used in U.S. homes is expended on space conditioning (i.e. heating and cooling).
The efficiency of furnaces and air conditioners has increased steadily since the energy crises of the 1970s. The 1987 National Appliance Energy Conservation Act authorized the Department of Energy to set minimum efficiency standards for space conditioning equipment and other appliances each year, based on what is "technologically feasible and economically justified". Beyond these minimum standards, the Environmental Protection Agency (EPA) awards the Energy Star designation to appliances that exceed industry efficiency averages by an EPA-specified percentage.
Despite technological improvements, many American lifestyle changes have put higher demands on heating and cooling resources. The average size of homes built in the United States has increased significantly, from 1,500 sq ft (140 m2) in 1970 to 2,300 sq ft (210 m2) in 2005. The single-person household has become more common, as has central air conditioning: 23% of households had central air conditioning in 1978, that figure rose to 55% by 2001.
As furnace efficiency gets higher, appropriate matching of equipment size to distribution system capacity and building load becomes more critical to optimizing equipment ability to maximize efficient operation. Installing much lower output high efficiency replacement equipment offers opportunity for huge comfort and savings gains, but improving the building envelope through air sealing and adding more insulation, advanced windows, etc., should be explored concurrently or before replacement equipment design stage.
The passive house approach produces super-insulated buildings that approach zero net energy consumption. Improving the building envelope can also be cheaper than replacing a furnace or air conditioner.
Even lower cost improvements include weatherization, which is frequently subsidized by utilities or state/federal tax credits, as are programmable thermostats. Consumers have also been urged to adopt a wider indoor temperature range (e.g. 65 °F (18 °C) in the winter, 80 °F (27 °C) in the summer).
One underutilized, but potentially very powerful means to reduce household energy consumption is to provide real-time feedback to homeowners so they can effectively alter their energy using behavior. Low cost energy feedback displays, such as the Energy Detective or "Wattvision", have become available. A study of a similar device deployed in 500 homes in Ontario, Canada, by Hydro One showed an average 6.5% drop in total electricity use when compared with a similarly sized control group.
Standby power used by consumer electronics and appliances while they are turned off accounts for an estimated 5 to 10% of household electricity consumption, adding an estimated $3 billion to annual energy costs in the USA. "In the average home, 75% of the electricity used to power home electronics is consumed while the products are turned off."
Home energy consumption averages:
- Home heating systems, 28.9%
- Home cooling systems, 14.0%
- Water heating, 12.9%
- Lighting, 9.0%
- Home electronics, 7.1%
- Refrigerators and freezers, 5.9%
- Clothing and dish washers, 4.5% (includes clothes dryers, does not include hot water)
- Cooking, 3.7%
- Computers, 2.2%
- Other, 4.4% (includes small electrics, heating elements, motors, pool and hot tub heaters, outdoor grills, and natural gas outdoor lighting)
- Non end-user energy expenditure, 5.4%.
Energy usage in some homes may vary widely from these averages. For example, milder regions such as the Southern U.S. and Pacific coast of the USA need far less energy for space conditioning than New York City or Chicago.
On the other hand, air conditioning energy use can be quite high in hot-arid regions (Southwest) and hot-humid zones (Southeast) In milder climates such as San Diego, lighting energy may easily consume up to 40% of total energy. Certain appliances such as a waterbed, hot tub, or pre-1990 refrigerator use significant amounts of electricity.
However, recent trends in home entertainment equipment can make a large difference in household energy use. For instance a 50" LCD television (average on-time= 6 hours a day) may draw 300 Watts less than a similarly sized plasma system. In most residences no single appliance dominates, and any conservation efforts must be directed to numerous areas in order to achieve substantial energy savings.
However, Ground, Air and Water Source Heat Pump systems, solar heating systems and evaporative coolers are among the more energy efficient, environmentally clean, and cost-effective space conditioning and domestic hot water systems available (Environmental Protection Agency), and can achieve reductions in energy consumptions of up to 69%
Building Design:
One of the primary ways to improve energy conservation in buildings is to use an energy audit. An energy audit is an inspection and analysis of energy use and flows for energy conservation in a building, process or system to reduce the amount of energy input into the system without negatively affecting the output(s).
This is normally accomplished by trained professionals and can be part of some of the national programs discussed above. In addition, recent development of smartphone apps enable homeowners to complete relatively sophisticated energy audits themselves.
Building technologies and smart meters can allow energy users, business and residential, to see graphically the impact their energy use can have in their workplace or homes. Advanced real-time energy metering is able to help people save energy by their actions.
In passive solar building design, windows, walls, and floors are made to collect, store, and distribute solar energy in the form of heat in the winter and reject solar heat in the summer. This is called passive solar design or climatic design because, unlike active solar heating systems, it doesn't involve the use of mechanical and electrical devices.
The key to designing a passive solar building is to best take advantage of the local climate. Elements to be considered include window placement and glazing type, thermal insulation, thermal mass, and shading. Passive solar design techniques can be applied most easily to new buildings, but existing buildings can be retrofitted.
Consumer Products:
Consumers are often poorly informed of the savings of energy efficient products. A prominent example of this is the energy savings that can be made by replacing an incandescent light bulb with a more modern alternative. When purchasing light bulbs, many consumers opt for cheap incandescent bulbs, failing to take into account their higher energy costs and lower lifespans when compared to modern compact fluorescent and LED bulbs.
Although these energy-efficient alternatives have a higher upfront cost, their long lifespan and low energy use can save consumers a considerable amount of money. The price of LEDs has also been steadily decreasing in the past five years, due to improvement of the semiconductor technology.
Many LED bulbs on the market qualify for utility rebates that further reduce the price of purchase to the consumer.[11] Estimates by The U.S. Department of Energy state that widespread adoption of LED lighting over the next 20 years could result in about $265 billion worth of savings in United States energy costs.
The research one must put into conserving energy is often too time consuming and costly for the average consumer, when there are cheaper products and technology available using today's fossil fuels.
Some governments and NGOs are attempting to reduce this complexity with ecolabels that make differences in energy efficiency easy to research while shopping.
To provide the kind of information and support people need to invest money, time and effort in energy conservation, it is important to understand and link to people's topical concerns.
For instance, some retailers argue that bright lighting stimulates purchasing. However, health studies have demonstrated that headache, stress, blood pressure, fatigue and worker error all generally increase with the common over-illumination present in many workplace and retail settings. It has been shown that natural daylighting increases productivity levels of workers, while reducing energy consumption.
In warm climates where air conditioning is used, any household device that gives off heat will result in a larger load on the cooling system. Items such as stove, dish washer, clothes dryer, hot water and incandescent lighting all add heat to the home. Low power or insulated versions of these devices give off less heat for the air conditioning to remove. The air conditioning system can also improve in efficiency by using a heat sink that is cooler than the standard air heat exchanger such as geothermal or water.
In cold climates heating air and water is a major demand on household energy use. By investing in newer technologies in the home, significant energy reductions are possible. Heat pumps are a more efficient alternative to using electrical resistance heaters for warming air or water.
A variety of efficient clothes dryers are available, and the classic clothes line requires no energy, only time.
Natural gas condensing boilers and hot air furnaces increase efficiency over standard hot flue models. New construction implementing heat exchangers can capture heat from waste water or exhaust air in bathrooms, laundry and kitchens.
In both warm and cold climate extremes, airtight thermal insulated construction will largely determine the efficiency of a home. Insulation is added to minimize the flow of heat to or from the home, but can be labor-intensive to retrofit to an existing home.
3) Commercial sector:
The commercial sector consists of retail stores, offices (business and government), restaurants, schools and other workplaces. Energy in this sector has the same basic end uses as the residential sector, in slightly different proportions. Space conditioning is again the single biggest consumption area, but it represents only about 30% of the energy use of commercial buildings.
Lighting, at 25%, plays a much larger role than it does in the residential sector. Lighting is also generally the most wasteful component of commercial use. A number of case studies indicate that more efficient lighting and elimination of over-illumination can reduce lighting energy by approximately fifty percent in many commercial buildings.
Commercial buildings can greatly increase energy efficiency by thoughtful design, with today's building stock being very poor examples of the potential of systematic (not expensive) energy efficient design (Steffy, 1997).
Commercial buildings often have professional management, allowing centralized control and coordination of energy conservation efforts. As a result, fluorescent lighting (about four times as efficient as incandescent) is the standard for most commercial space, although it may produce certain adverse health effects.
Potential health concerns can be mitigated by using newer fixtures with electronic ballasts rather than older magnetic ballasts. As most buildings have consistent hours of operation, programmed thermostats and lighting controls are common.
However, too many companies believe that merely having a computer controlled Building automation system guarantees energy efficiency. As an example one large company in Northern California boasted that it was confident its state of the art system had optimized space heating.
A more careful analysis by Lumina Technologies showed the system had been given programming instructions to maintain constant 24‑hour temperatures in the entire building complex. This instruction caused the injection of nighttime heat into vacant buildings when the daytime summer temperatures would often exceed 90 °F (32 °C). This mis-programming was costing the company over $130,000 per year in wasted energy (Lumina Technologies, 1997). Many corporations and governments also require the Energy Star rating for any new equipment purchased for their buildings.
Solar heat loading through standard window designs usually leads to high demand for air conditioning in summer months. An example of building design overcoming this excessive heat loading is the Dakin Building in Brisbane, California, where fenestration was designed to achieve an angle with respect to sun incidence to allow maximum reflection of solar heat; this design also assisted in reducing interior over-illumination to enhance worker efficiency and comfort.
Recent advances include use of occupancy sensors to turn off lights when spaces are unoccupied, and photo sensors to dim or turn off electric lighting when natural light is available.
In air conditioning systems, overall equipment efficiencies have increased as energy codes and consumer information have begun to emphasise year round performance rather than just efficiency ratings at maximum output. Controllers that automatically vary the speeds of fans, pumps, and compressors have radically improved part-load performance of those devices.
For space or water heating, electric heat pumps consume roughly half the energy required by electric resistance heaters. Natural gas heating efficiencies have improved through use of condensing furnaces and boilers, in which the water vapor in the flue gas is cooled to liquid form before it is discharged, allowing the heat of condensation to be used. In buildings where high levels of outside air are required, heat exchangers can capture heat from the exhaust air to preheat incoming supply air.
A company in Florida tackled the issue of both energy-conservation and enhancing its workplace environment by implementing a conveyor system that is 40-60% quieter than traditional systems, emitting a noise level of only 55-50 decibels, equivalent to a soft-rock radio station. Lighting was addressed by not only programming the lighting console so that isolated lights could be switched on and off in designated areas of the warehouse, but also by enhancing natural lighting through the use of skylights and a high-gloss floor.
4) Industrial Sector:
The industrial sector represents all production and processing of goods, including manufacturing, construction, farming, water management and mining.
Increasing costs have forced energy-intensive industries to make substantial efficiency improvements in the past 30 years. For example, the energy used to produce steel and paper products has been cut 40% in that time frame, while petroleum/aluminum refining and cement production have reduced their usage by about 25%. These reductions are largely the result of recycling waste material and the use of cogeneration equipment for electricity and heating.
Another example for efficiency improvements is the use of products made of High temperature insulation wool (HTIW) which enables predominantly industrial users to operate thermal treatment plants at temperatures between 800 and 1400 °C.
In these high-temperature applications, the consumption of primary energy and the associated CO2 emissions can be reduced by up to 50% compared with old fashioned industrial installations. The application of products made of High temperature insulation Wool is becoming increasingly important against the background of the dramatic rising cost of energy.
U.S. agriculture has doubled farm energy efficiency in the last 25 years. The energy required for delivery and treatment of fresh water often constitutes a significant percentage of a region's electricity and natural gas usage (an estimated 20% of California's total energy use is water-related).
In light of this, some local governments have worked toward a more integrated approach to energy and water conservation efforts. To conserve energy, some industries have begun using solar panels to heat their water.
Unlike the other sectors, total energy use in the industrial sector has declined in the last decade. While this is partly due to conservation efforts, it is also a reflection of the growing trend for U.S. companies to move manufacturing operations overseas.
Government Incentives and Initiatives:
Part B of Title III of the Energy Policy and Conservation Act established the Energy Conservation Program for Consumer Products other than Automobiles, which gives the Department of Energy the "authority to develop, revise, and implement minimum energy conservation standards for appliances and equipment."
As currently implemented, the Department of Energy enforces test procedures and minimum standards for more than 50 products covering residential, commercial and industrial, lighting, and plumbing applications.
The Energy Policy Act of 2005 included incentives which provide a tax credit of 30% of the cost of the new item with a $500 aggregate limit; the program was initially set to expire at the end of 2007 but was extended to 2010 and the aggregate limit increased to $1,500 by the Energy Improvement and Extension Act of 2008 and The American Recovery and Reinvestment Act of 2009, when it will expire.
By Executive Order 13514, U.S. President Barack Obama mandated that by 2015, 15% of existing Federal buildings conform to new energy efficiency standards and 100% of all new Federal buildings be Zero-Net-Energy by 2030.
The states and local areas (e.g., cities or counties) have various initiatives, and the U.S. Department of Energy funded a database known as DSIRE which provides information on these initiatives. The state of Maryland has set a target of reducing its electricity usage by 15% from 2008 to 2015.
See also:
- Earthship
- Energy and the environment
- Environment of the United States
- Passive house
- Portland Energy Conservation
- Superinsulation
- Self-sufficient homes
- Zero energy building
- Zero-Net-Energy USA Federal Buildings
Energy-efficient driving techniques are used by drivers who wish to reduce their fuel consumption.
Simple fuel efficiency techniques can result in a reduction in fuel consumption without resorting to radical fuel-saving techniques that can be unlawful and dangerous, such as tailgating larger vehicles.
For amplification, click on any of the following:
Simple fuel efficiency techniques can result in a reduction in fuel consumption without resorting to radical fuel-saving techniques that can be unlawful and dangerous, such as tailgating larger vehicles.
For amplification, click on any of the following:
- Techniques
- Maintenance
- Mass and improving aerodynamics
- Maintaining an efficient speed
- Choice of gear (manual transmissions)
- Acceleration and deceleration (braking)
- Coasting or gliding
- Anticipating traffic
- Minimizing ancillary losses
- Fuel type
- Pulse and Glide
- Causes of pulse-and-glide energy saving
- Drafting
- Energy losses
- Safety
- See also:
Hydraulic Fracturing (used to release Oil and Natural Gas as a Source of Energy) and its Environmental Impact
YouTube Video: CNN explains Fracking
Pictured below: Illustration of hydraulic fracturing and related activities
YouTube Video: CNN explains Fracking
Pictured below: Illustration of hydraulic fracturing and related activities
(Click here to see report for the amount of natural gas used in the United States is derived from hydraulic fracturing)
The environmental impact of hydraulic fracturing (or "hydraulic fracking") affects land use and water consumption, methane emissions, air emissions, water contamination, noise pollution, and health. Water and air pollution are the biggest risks to human health from hydraulic fracturing. Research is underway to determine if human health has been affected, and rigorous adherence to regulation and safety procedures is required to avoid harm. Noise from hydraulic fracturing and associated transport can also affect residents and local wildlife.
Hydraulic fracturing fluids include proppants and other substances, which may include toxic chemicals. In the United States, such additives may be treated as trade secrets by companies who use them. Lack of knowledge about specific chemicals has complicated efforts to develop risk management policies and to study health effects. In other jurisdictions, such as the United Kingdom, these chemicals must be made public and their applications are required to be nonhazardous.
Water usage by hydraulic fracturing can be a problem in areas that experience water shortage. Surface water may be contaminated through spillage and improperly built and maintained waste pits, in jurisdictions where these are permitted. Further, ground water can be contaminated if fluid is able to escape during fracking. Produced water, the water that returns to the surface after fracking, is managed by underground injection, municipal and commercial wastewater treatment, and reuse in future wells.
There is potential for methane to leak into ground water and the air, though escape of a methane is a bigger problem in older wells than in those built under more recent legislation.
Hydraulic fracturing causes induced seismicity called microseismic events or micro-earthquakes. The magnitude of these events is too small to be detected at the surface, being of magnitude M-3 to M-1 usually. However, fluid disposal wells (which are often used in the USA to dispose of polluted waste from several industries) have been responsible for earthquakes up to 5.6M in Oklahoma and other states.
Governments worldwide are developing regulatory frameworks to assess and manage environmental and associated health risks, working under pressure from industry on the one hand, and from anti-fracking groups on the other.
In some countries like France a precautionary approach has been favored and hydraulic fracturing has been banned. Some countries such as the United States have adopted the approach of identifying risks before regulating. The United Kingdom's regulatory framework is based on conclusion that the risks associated with hydraulic fracturing are manageable if carried out under effective regulation and if operational best practices are implemented.
Click on any of the following for further amplification:
The environmental impact of hydraulic fracturing (or "hydraulic fracking") affects land use and water consumption, methane emissions, air emissions, water contamination, noise pollution, and health. Water and air pollution are the biggest risks to human health from hydraulic fracturing. Research is underway to determine if human health has been affected, and rigorous adherence to regulation and safety procedures is required to avoid harm. Noise from hydraulic fracturing and associated transport can also affect residents and local wildlife.
Hydraulic fracturing fluids include proppants and other substances, which may include toxic chemicals. In the United States, such additives may be treated as trade secrets by companies who use them. Lack of knowledge about specific chemicals has complicated efforts to develop risk management policies and to study health effects. In other jurisdictions, such as the United Kingdom, these chemicals must be made public and their applications are required to be nonhazardous.
Water usage by hydraulic fracturing can be a problem in areas that experience water shortage. Surface water may be contaminated through spillage and improperly built and maintained waste pits, in jurisdictions where these are permitted. Further, ground water can be contaminated if fluid is able to escape during fracking. Produced water, the water that returns to the surface after fracking, is managed by underground injection, municipal and commercial wastewater treatment, and reuse in future wells.
There is potential for methane to leak into ground water and the air, though escape of a methane is a bigger problem in older wells than in those built under more recent legislation.
Hydraulic fracturing causes induced seismicity called microseismic events or micro-earthquakes. The magnitude of these events is too small to be detected at the surface, being of magnitude M-3 to M-1 usually. However, fluid disposal wells (which are often used in the USA to dispose of polluted waste from several industries) have been responsible for earthquakes up to 5.6M in Oklahoma and other states.
Governments worldwide are developing regulatory frameworks to assess and manage environmental and associated health risks, working under pressure from industry on the one hand, and from anti-fracking groups on the other.
In some countries like France a precautionary approach has been favored and hydraulic fracturing has been banned. Some countries such as the United States have adopted the approach of identifying risks before regulating. The United Kingdom's regulatory framework is based on conclusion that the risks associated with hydraulic fracturing are manageable if carried out under effective regulation and if operational best practices are implemented.
Click on any of the following for further amplification:
- Air emissions
- Water consumption
- Water contamination
- Radionuclides
- Land usage
- Seismicity
- Noise
- Safety issues
- Health risks
- Policy and science
- See also:
- Cradle-to-Cradle Design
- Design for Environment
- Ecolabel
- Environmental Choice Program
- Environmental enterprise
- Environmental movement
- Environmental organizations
- Environmental protection
- Environmentalism
- Green brands
- Green festivals
- Green trading
- Greenwashing
- List of environmental issues
- List of environmental organizations
- List of environmental topics
- Market-based instruments
- Natural capital
- Natural resource
- Renewable energy
- Sustainability
- Sustainable Products
- Green trading
- Greenwashing
- List of environmental issues
- List of environmental organizations
- List of environmental topics
- Market-based instruments
- Natural capital
- Natural resource
- Renewable energy
- Sustainability
- Sustainable Products
Alternative Fuels that are safe for the Environment
YouTube Video: Fuel Efficient Driving Tips Video (Canadian Automobile Association)
Pictured Below: Comparison of energy efficiency between battery and hydrogen fuel-cell cars.
YouTube Video: Fuel Efficient Driving Tips Video (Canadian Automobile Association)
Pictured Below: Comparison of energy efficiency between battery and hydrogen fuel-cell cars.
Alternative fuels, known as non-conventional or advanced fuels, are any materials or substances that can be used as fuels, other than conventional fuels like; fossil fuels (petroleum (oil), coal, and natural gas), as well as nuclear materials such as uranium and thorium, as well as artificial radioisotope fuels that are made in nuclear reactors.
Alternative fuels include,
Click on any of the following for further amplification:
Alternative fuels include,
- biodiesel,
- bioalcohol (methanol, ethanol, butanol),
- chemically stored electricity (batteries and fuel cells),
- hydrogen,
- non-fossil methane,
- non-fossil natural gas,
- vegetable oil,
- propane
- and other biomass sources.
Click on any of the following for further amplification:
- Background
- Biofuel
- Alcohol fuels
- Ammonia
- Carbon-neutral and negative fuels
- Hydrogen
- Hydrogen/compressed natural gas mixture
- Liquid nitrogen
- Compressed air
- Propane autogas
- Natural gas vehicles
- Nuclear power and radiothermal generators
- See also
- Alcohol fuel
- Alternative fuel cars
- Alternative propulsion
- Biogas
- Compressed-air vehicle
- E-diesel
- Energy development
- Fischer-Tropsch process
- Greasestock - An alternative fuel festival in New York
- Heating value
- List of 2007 Hybrid Vehicles
- List of energy topics
- Magnesium injection cycle
- Natural gas hydrate — A possible future alternative to LNG for transporting natural gas
- Swiftfuel — A potential lead-free alternative to 100LL aviation gasoline.
- Vegetable oil fuel
- Alternative Fuels Data Center (U.S. DOE)
- Alternative Fuels Information Centre (Victorian Government)
- Alternative Fuel Vehicle Training National Alternative Fuels Training Consortium, West Virginia University
- ScienceDaily - Alternative Fuel News
- Sustainable Green Fleets, an EU-sponsored dissemination project for alternatively fuels for fleets
- Pop. Mechanics: Crunching the numbers on alternative fuels
- Global list of Alternative Fuels related Organizations on WiserEarth
- Alternative Fuels portal on WiserEarth
- Alternative Clean Transportation Expo
- Hydrogen Internal Combustion Engine Vehicles
- Student's Guide to Alternative Fuels
- Green Revolution - The Future of Electric Cars
Carbon Footprint and the EPA Carbon Footprint Calculator
YouTube Video about the EPA Carbon Footprint Calculator
YouTube Video about the EPA Carbon Footprint Calculator
A carbon footprint is historically defined as "the total set of greenhouse gas emissions caused by an [individual, event, organisation, product] expressed as CO2e."
The total carbon footprint cannot be calculated because of the large amount of data required and the fact that carbon dioxide can be produced by natural occurrences. It is for this reason that Wright, Kemp, and Williams, writing in the journal Carbon Management, have suggested a more practicable definition:
Greenhouse gases (GHGs) can be emitted through transport, land clearance, and the production and consumption of food, fuels, manufactured goods, materials, wood, roads, buildings, and services. For simplicity of reporting, it is often expressed in terms of the amount of carbon dioxide, or its equivalent of other GHGs, emitted.
Most of the carbon footprint emissions for the average U.S. household come from "indirect" sources, i.e. fuel burned to produce goods far away from the final consumer. These are distinguished from emissions which come from burning fuel directly in one's car or stove, commonly referred to as "direct" sources of the consumer's carbon footprint.
The concept name of the carbon footprint originates from ecological footprint, discussion, which was developed by Rees and Wackernagel in the 1990s and which estimates the number of "earths" that would theoretically be required if everyone on the planet consumed resources at the same level as the person calculating their ecological footprint.
However, given that ecological footprints are a measure of failure, Anindita Mitra (CREA, Seattle) chose the more easily calculated "carbon footprint" to easily measure use of carbon, as an indicator of unsustainable energy use.
In 2007, carbon footprints was used as a measure of carbon emissions to develop the energy plan for City of Lynnwood, Washington. Carbon footprints are much more specific than ecological footprints since they measure direct emissions of gases that cause climate change into the atmosphere.
Carbon footprint is one of a family of footprint indicators, which also includes water footprint and land footprint.
For further amplification, click on any of the following hyperlinks:
The total carbon footprint cannot be calculated because of the large amount of data required and the fact that carbon dioxide can be produced by natural occurrences. It is for this reason that Wright, Kemp, and Williams, writing in the journal Carbon Management, have suggested a more practicable definition:
- A measure of the total amount of carbon dioxide (CO2) and methane (CH4) emissions of a defined population, system or activity, considering all relevant sources, sinks and storage within the spatial and temporal boundary of the population, system or activity of interest. Calculated as carbon dioxide equivalent (CO2e) using the relevant 100-year global warming potential (GWP100).
Greenhouse gases (GHGs) can be emitted through transport, land clearance, and the production and consumption of food, fuels, manufactured goods, materials, wood, roads, buildings, and services. For simplicity of reporting, it is often expressed in terms of the amount of carbon dioxide, or its equivalent of other GHGs, emitted.
Most of the carbon footprint emissions for the average U.S. household come from "indirect" sources, i.e. fuel burned to produce goods far away from the final consumer. These are distinguished from emissions which come from burning fuel directly in one's car or stove, commonly referred to as "direct" sources of the consumer's carbon footprint.
The concept name of the carbon footprint originates from ecological footprint, discussion, which was developed by Rees and Wackernagel in the 1990s and which estimates the number of "earths" that would theoretically be required if everyone on the planet consumed resources at the same level as the person calculating their ecological footprint.
However, given that ecological footprints are a measure of failure, Anindita Mitra (CREA, Seattle) chose the more easily calculated "carbon footprint" to easily measure use of carbon, as an indicator of unsustainable energy use.
In 2007, carbon footprints was used as a measure of carbon emissions to develop the energy plan for City of Lynnwood, Washington. Carbon footprints are much more specific than ecological footprints since they measure direct emissions of gases that cause climate change into the atmosphere.
Carbon footprint is one of a family of footprint indicators, which also includes water footprint and land footprint.
For further amplification, click on any of the following hyperlinks:
- Measuring carbon footprints
- Average carbon emissions per person by country
- Direct carbon emissions
- Indirect carbon emissions: the carbon footprints of products
- Schemes to reduce carbon emissions: Kyoto Protocol, carbon offsetting, and certificates
- Ways to reduce carbon footprint
- GHG footprint
- See also:
- 4 Degrees and Beyond International Climate Conference
- 2000-watt society
- Avoiding dangerous climate change
- Carbon accounting
- Carbon cycle
- Carbon diet
- Carbon intensity
- Carbon literacy
- Carbon lock-in
- Carbon Shredders
- Chief green officer
- Climate footprint
- Earthcheck
- Ecological footprint
- Ecosharing
- Energy neutral design
- Energy policy
- Enterprise carbon accounting
- Environmental impact of aviation
- Food miles
- Greenhouse debt
- Greenhouse gas emissions accounting
- Global warming
- Green conventions
- Hyper-mobile travellers
- Land footprint
- Life cycle assessment
- List of carbon accounting software
- List of countries by carbon dioxide emissions per capita
- List of countries by greenhouse gas emissions per capita
- Low carbon diet
- Medical tourism
- Open Carbon World
- Relative cost of electricity generated by different sources
- Runoff footprint
- Telecommuting
- Water footprint
- Weighted average cost of carbon
Converting Water into Energy Through Electrolysis
YouTube Video: Understanding Electrolysis
Pictured: Light water nuclear power plants can provide safe, efficient, and clean power for converting large quantities of seawater into usable hydrogen fuel (Courtesy of the Center for Environment, Commerce & Energy)
YouTube Video: Understanding Electrolysis
Pictured: Light water nuclear power plants can provide safe, efficient, and clean power for converting large quantities of seawater into usable hydrogen fuel (Courtesy of the Center for Environment, Commerce & Energy)
Electrolysis of water is the decomposition of water (H2O) into oxygen (O2) and hydrogen gas (H2) due to an electric current being passed through the water. The reaction has a standard potential of −1.23 V, meaning it ideally requires a potential difference of 1.23 volts to split water.
This technique can be used to make hydrogen fuel (hydrogen gas) and breathable oxygen; though currently most industrial methods make hydrogen fuel from natural gas instead.
Principle:
A DC electrical power source is connected to two electrodes, or two plates (typically made from some inert metal such as platinum, stainless steel or iridium) which are placed in the water.
Hydrogen will appear at the cathode (where electrons enter the water), and oxygen will appear at the anode. Assuming ideal faradaic efficiency, the amount of hydrogen generated is twice the amount of oxygen, and both are proportional to the total electrical charge conducted by the solution.
However, in many cells competing side reactions occur, resulting in different products and less than ideal faradaic efficiency.
Electrolysis of pure water requires excess energy in the form of overpotential to overcome various activation barriers. Without the excess energy the electrolysis of pure water occurs very slowly or not at all.
This is in part due to the limited self-ionization of water. Pure water has an electrical conductivity about one millionth that of seawater. Many electrolytic cells may also lack the requisite electrocatalysts. The efficiency of electrolysis is increased through the addition of an electrolyte (such as a salt, an acid or a base) and the use of electrocatalysts.
Currently the electrolytic process is rarely used in industrial applications since hydrogen can currently be produced more affordably from fossil fuels.
For further amplification, click on any of the following (blue/underlined) Hyperlinks:
This technique can be used to make hydrogen fuel (hydrogen gas) and breathable oxygen; though currently most industrial methods make hydrogen fuel from natural gas instead.
Principle:
A DC electrical power source is connected to two electrodes, or two plates (typically made from some inert metal such as platinum, stainless steel or iridium) which are placed in the water.
Hydrogen will appear at the cathode (where electrons enter the water), and oxygen will appear at the anode. Assuming ideal faradaic efficiency, the amount of hydrogen generated is twice the amount of oxygen, and both are proportional to the total electrical charge conducted by the solution.
However, in many cells competing side reactions occur, resulting in different products and less than ideal faradaic efficiency.
Electrolysis of pure water requires excess energy in the form of overpotential to overcome various activation barriers. Without the excess energy the electrolysis of pure water occurs very slowly or not at all.
This is in part due to the limited self-ionization of water. Pure water has an electrical conductivity about one millionth that of seawater. Many electrolytic cells may also lack the requisite electrocatalysts. The efficiency of electrolysis is increased through the addition of an electrolyte (such as a salt, an acid or a base) and the use of electrocatalysts.
Currently the electrolytic process is rarely used in industrial applications since hydrogen can currently be produced more affordably from fossil fuels.
For further amplification, click on any of the following (blue/underlined) Hyperlinks:
- History
- Principle
- Equations
- Thermodynamics
- Electrolyte selection
- Techniques
- Applications
- Efficiency
- See also
- Electrochemistry
- Electrolysis
- Hydrogen production
- Noryl
- Gas cracker
- Photocatalytic water splitting
- Water purification
- Timeline of hydrogen technologies
- Electrochemical cell
- "Electrolysis of Water". Experiments on Electrochemistry. Retrieved 20 November 2005.
- EERE 2008 – 100 kgH2/day Trade Study
Environmental impact of the petroleum industry
YouTube Video Climate Change: What Do Scientists Say?
Pictured below:
LEFT: A beach after an oil spill;
CENTER: Trees killed by acid rain, an unwanted side effect of burning petroleum;
RIGHT: A bird covered in oil from the Black Sea oil spill (Courtesy of Marine Photobank - originally posted to Flickr as Oiled Bird - Black Sea Oil Spill 11/12/07, CC BY 2.0)
YouTube Video Climate Change: What Do Scientists Say?
Pictured below:
LEFT: A beach after an oil spill;
CENTER: Trees killed by acid rain, an unwanted side effect of burning petroleum;
RIGHT: A bird covered in oil from the Black Sea oil spill (Courtesy of Marine Photobank - originally posted to Flickr as Oiled Bird - Black Sea Oil Spill 11/12/07, CC BY 2.0)
The environmental impact of petroleum is often negative because it is toxic to almost all forms of life and its extraction fuels climate change. Petroleum, commonly referred to as oil, is closely linked to virtually all aspects of present society, especially for transportation and heating for both homes and for commercial and industrial activities.
Environmental impact of the energy industry
The environmental impact of the energy industry is diverse. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years. In recent years there has been a trend towards the increased commercialization of various renewable energy sources.
Consumption of fossil fuel resources leads to global warming and climate change. In most parts of the world little change is being made to slow these changes. If the peak oil theory proves true, and more explorations of viable alternative energy sources are made, our impact could be less hostile to our environment.
Rapidly advancing technologies can achieve a transition of energy generation, water and waste management, and food production towards better environmental and energy usage practices using methods of systems ecology and industrial ecology.
(For further amplification on "Environmental impact of the energy industry" click here.)
Toxicity:
Crude oil is a mixture of many different kinds of organic compounds, many of which are highly toxic and cancer causing (carcinogenic). Oil is "acutely lethal" to fish - that is, it kills fish quickly, at a concentration of 4000 parts per million (ppm) (0.4%). Crude oil and petroleum distillates also cause birth defects.
Benzene is present in both crude oil and gasoline and is known to cause leukaemia in humans. The compound is also known to lower the white blood cell count in humans, which would leave people exposed to it more susceptible to infections. "Studies have linked benzene exposure in the mere parts per billion (ppb) range to terminal leukemia, Hodgkin's lymphoma, and other blood and immune system diseases within 5-15 years of exposure."
Exhaust:
When oil or petroleum distillates are burned (see combustion), usually the combustion is not complete. This means that incompletely burned compounds are created in addition to just water and carbon dioxide. The other compounds are often toxic to life. Examples are carbon monoxide and methanol. Also, fine particulates of soot blacken humans' and other animals' lungs and cause heart problems or death. Soot is cancer causing (carcinogenic).
Acid Rain: High temperatures created by the combustion of petroleum cause nitrogen gas in the surrounding air to oxidize, creating nitrous oxides. Nitrous oxides, along with sulfur dioxide from the sulfur in the oil, combine with water in the atmosphere to create acid rain.
Acid rain causes many problems such as dead trees and acidified lakes with dead fish. Coral reefs in the world's oceans are killed by acidic water caused by acid rain.
Acid rain leads to increased corrosion of machinery and structures (large amounts of capital), and to the slow destruction of archaeological structures like the marble ruins in Rome and Greece.
Climate Change: Humans burning large amounts of petroleum create large amounts of CO2 (carbon dioxide) gas that traps heat in the Earth's atmosphere.
Oil Spills: An oil spill is the release of a liquid petroleum hydrocarbon into the environment, especially marine areas, due to human activity, and is a form of pollution. The term is usually applied to marine oil spills, where oil is released into the ocean or coastal waters, but spills may also occur on land.
Oil spills may be due to releases of crude oil from tankers, pipelines, railcars, offshore platforms, drilling rigs and wells, as well as spills of refined petroleum products (such as gasoline, diesel) and their by-products, heavier fuels used by large ships such as bunker fuel, or the spill of any oily refuse or waste oil.
Major oil spills include the Kuwaiti oil fires, Kuwaiti oil lakes, Lakeview Gusher, Gulf War oil spill, and the Deepwater Horizon oil spill. Spilt oil penetrates into the structure of the plumage of birds and the fur of mammals, reducing its insulating ability, and making them more vulnerable to temperature fluctuations and much less buoyant in the water.
Cleanup and recovery from an oil spill is difficult and depends upon many factors, including the type of oil spilled, the temperature of the water (affecting evaporation and bio-degradation), and the types of shorelines and beaches involved. Spills may take weeks, months or even years to clean up.
Volatile organic compounds (VOCs) are gases or vapours emitted by various solids and liquids, many of which have short- and long-term adverse effects on human health and the environment.
VOCs from petroleum are toxic and foul the air, and some like benzene are extremely toxic, carcinogenic and cause DNA damage. Benzene often makes up about 1% of crude oil and gasoline.
Benzene is present in automobile exhaust. More important for vapors from spills of diesel and crude oil are aliphatic, volatile compounds. Although "less toxic" than compounds like benzene, their overwhelming abundance can still cause health concerns even when benzene levels in the air are relatively low.
The compounds are sometimes collectively measured as "Total Petroleum Hydrocarbons" or "TPH." Petroleum hydrocarbons such as gasoline, diesel, or jet fuel intruding into indoor spaces from underground storage tanks or brownfields threaten safety (e.g., explosive potential) and causes adverse health effects from inhalation.
Waste Oil: is used oil containing not only breakdown products but also impurities from use. Some examples of waste oil are used oils such as hydraulic oil, transmission oil, brake fluids, motor oil, crankcase oil, gear box oil and synthetic oil.
Many of the same problems associated with natural petroleum exist with waste oil. When waste oil from vehicles drips out engines over streets and roads, the oil travels into the water table bringing with it such toxins as benzene. This poisons both soil and drinking water. Runoff from storms carries waste oil into rivers and oceans, poisoning them as well.
Conservation and phasing out:
Substitution of other energy sources:
Use of biomass instead of petroleum:
Environmental impact of the energy industry
The environmental impact of the energy industry is diverse. Energy has been harnessed by human beings for millennia. Initially it was with the use of fire for light, heat, cooking and for safety, and its use can be traced back at least 1.9 million years. In recent years there has been a trend towards the increased commercialization of various renewable energy sources.
Consumption of fossil fuel resources leads to global warming and climate change. In most parts of the world little change is being made to slow these changes. If the peak oil theory proves true, and more explorations of viable alternative energy sources are made, our impact could be less hostile to our environment.
Rapidly advancing technologies can achieve a transition of energy generation, water and waste management, and food production towards better environmental and energy usage practices using methods of systems ecology and industrial ecology.
(For further amplification on "Environmental impact of the energy industry" click here.)
Toxicity:
Crude oil is a mixture of many different kinds of organic compounds, many of which are highly toxic and cancer causing (carcinogenic). Oil is "acutely lethal" to fish - that is, it kills fish quickly, at a concentration of 4000 parts per million (ppm) (0.4%). Crude oil and petroleum distillates also cause birth defects.
Benzene is present in both crude oil and gasoline and is known to cause leukaemia in humans. The compound is also known to lower the white blood cell count in humans, which would leave people exposed to it more susceptible to infections. "Studies have linked benzene exposure in the mere parts per billion (ppb) range to terminal leukemia, Hodgkin's lymphoma, and other blood and immune system diseases within 5-15 years of exposure."
Exhaust:
When oil or petroleum distillates are burned (see combustion), usually the combustion is not complete. This means that incompletely burned compounds are created in addition to just water and carbon dioxide. The other compounds are often toxic to life. Examples are carbon monoxide and methanol. Also, fine particulates of soot blacken humans' and other animals' lungs and cause heart problems or death. Soot is cancer causing (carcinogenic).
Acid Rain: High temperatures created by the combustion of petroleum cause nitrogen gas in the surrounding air to oxidize, creating nitrous oxides. Nitrous oxides, along with sulfur dioxide from the sulfur in the oil, combine with water in the atmosphere to create acid rain.
Acid rain causes many problems such as dead trees and acidified lakes with dead fish. Coral reefs in the world's oceans are killed by acidic water caused by acid rain.
Acid rain leads to increased corrosion of machinery and structures (large amounts of capital), and to the slow destruction of archaeological structures like the marble ruins in Rome and Greece.
Climate Change: Humans burning large amounts of petroleum create large amounts of CO2 (carbon dioxide) gas that traps heat in the Earth's atmosphere.
Oil Spills: An oil spill is the release of a liquid petroleum hydrocarbon into the environment, especially marine areas, due to human activity, and is a form of pollution. The term is usually applied to marine oil spills, where oil is released into the ocean or coastal waters, but spills may also occur on land.
Oil spills may be due to releases of crude oil from tankers, pipelines, railcars, offshore platforms, drilling rigs and wells, as well as spills of refined petroleum products (such as gasoline, diesel) and their by-products, heavier fuels used by large ships such as bunker fuel, or the spill of any oily refuse or waste oil.
Major oil spills include the Kuwaiti oil fires, Kuwaiti oil lakes, Lakeview Gusher, Gulf War oil spill, and the Deepwater Horizon oil spill. Spilt oil penetrates into the structure of the plumage of birds and the fur of mammals, reducing its insulating ability, and making them more vulnerable to temperature fluctuations and much less buoyant in the water.
Cleanup and recovery from an oil spill is difficult and depends upon many factors, including the type of oil spilled, the temperature of the water (affecting evaporation and bio-degradation), and the types of shorelines and beaches involved. Spills may take weeks, months or even years to clean up.
Volatile organic compounds (VOCs) are gases or vapours emitted by various solids and liquids, many of which have short- and long-term adverse effects on human health and the environment.
VOCs from petroleum are toxic and foul the air, and some like benzene are extremely toxic, carcinogenic and cause DNA damage. Benzene often makes up about 1% of crude oil and gasoline.
Benzene is present in automobile exhaust. More important for vapors from spills of diesel and crude oil are aliphatic, volatile compounds. Although "less toxic" than compounds like benzene, their overwhelming abundance can still cause health concerns even when benzene levels in the air are relatively low.
The compounds are sometimes collectively measured as "Total Petroleum Hydrocarbons" or "TPH." Petroleum hydrocarbons such as gasoline, diesel, or jet fuel intruding into indoor spaces from underground storage tanks or brownfields threaten safety (e.g., explosive potential) and causes adverse health effects from inhalation.
Waste Oil: is used oil containing not only breakdown products but also impurities from use. Some examples of waste oil are used oils such as hydraulic oil, transmission oil, brake fluids, motor oil, crankcase oil, gear box oil and synthetic oil.
Many of the same problems associated with natural petroleum exist with waste oil. When waste oil from vehicles drips out engines over streets and roads, the oil travels into the water table bringing with it such toxins as benzene. This poisons both soil and drinking water. Runoff from storms carries waste oil into rivers and oceans, poisoning them as well.
Conservation and phasing out:
- Creating laws to completely phase out the use of petroleum (Sweden's 15-year plan)
- Making use of petroleum more efficiently via better technology
Substitution of other energy sources:
- Using "cleaner" energy sources such as natural gas and biodiesel, especially in critical areas like cities where there are people.
Use of biomass instead of petroleum:
- It is suggested that cellulose from fibrous plant material, such as hemp, can be used to produce alternatives to many oil-based products.
- Plastics can be created from cellulose instead of from oil.
- Lubricants like motor oil and grease can be made from plants and animal fat.
- Decreasing the risk of spills
- False floors at gasoline stations to catch gasoline and oil drips from making it into the water table.
- Environment portal
- Energy portal
- Arctic Refuge drilling controversy
- Environmental impact of the petroleum industry in Nigeria
- Energy and the environment
- Environmental issues of oil sands
- List of environmental issues
- Peak oil
Fuel Cell (see also Article by Scientific American (7/3/2008): Can Hydrogen derived from a Fuel Cell Economically Replace Gasoline?)
YouTube Video: Akio Toyoda introduces Toyota's "Mirai" Fuel Cell Sedan
Below: Picture Set #1: LEFT: Demonstration model of a direct-methanol fuel cell; RIGHT: Scheme of a proton-conducting fuel cell.
___________________________________________________________________________
Below: Picture Set #2: LEFT: Configuration of components in a fuel cell car (Courtesy of Welleman - Own work, Public Domain): RIGHT: 2015 Toyota Mirai fuel cell sedan (right-hand side Japanese version):
Below: Picture Set #2: LEFT: Configuration of components in a fuel cell car (Courtesy of Welleman - Own work, Public Domain): RIGHT: 2015 Toyota Mirai fuel cell sedan (right-hand side Japanese version):
Fuel Cell Technology:
A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction of positively charged hydrogen ions with oxygen or another oxidizing agent.
Fuel cells are different from batteries in that they require a continuous source of fuel and oxygen or air to sustain the chemical reaction, whereas in a battery the chemicals present in the battery react with each other to generate an electromotive force (emf). Fuel cells can produce electricity continuously for as long as these inputs are supplied.
The first fuel cells were invented in 1838. The first commercial use of fuel cells came more than a century later in NASA space programs to generate power for satellites and space capsules.
Since then, fuel cells have been used in many other applications. Fuel cells are used for primary and backup power for commercial, industrial and residential buildings and in remote or inaccessible areas. They are also used to power fuel cell vehicles, including forklifts, automobiles, buses, boats, motorcycles and submarines.
There are many types of fuel cells, but they all consist of an anode, a cathode, and an electrolyte that allows positively charged hydrogen ions (or protons) to move between the two sides of the fuel cell.
The anode and cathode contain catalysts that cause the fuel to undergo oxidation reactions that generate positively charged hydrogen ions and electrons. The hydrogen ions are drawn through the electrolyte after the reaction. At the same time, electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity. At the cathode, hydrogen ions, electrons, and oxygen react to form water.
As the main difference among fuel cell types is the electrolyte, fuel cells are classified by the type of electrolyte they use and by the difference in startup time ranging from 1 second for proton exchange membrane fuel cells (PEM fuel cells, or PEMFC) to 10 minutes for solid oxide fuel cells (SOFC).
Individual fuel cells produce relatively small electrical potentials, about 0.7 volts, so cells are "stacked", or placed in series, to create sufficient voltage to meet an application's requirements. In addition to electricity, fuel cells produce water, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions.
The energy efficiency of a fuel cell is generally between 40–60%, or up to 85% efficient in co-generation if waste heat is captured for use.
The fuel cell market is growing, and in 2013 Pike Research estimated that the stationary fuel cell market will reach 50 GW by 2020.
Click here to read the Scientific American article (7/3/2008): "Can Hydrogen derived from a Fuel Cell Economically Replace Gasoline?"
For further amplification about Fuel Cell technology, click on of the following blue hyperlinks:
A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction of positively charged hydrogen ions with oxygen or another oxidizing agent.
Fuel cells are different from batteries in that they require a continuous source of fuel and oxygen or air to sustain the chemical reaction, whereas in a battery the chemicals present in the battery react with each other to generate an electromotive force (emf). Fuel cells can produce electricity continuously for as long as these inputs are supplied.
The first fuel cells were invented in 1838. The first commercial use of fuel cells came more than a century later in NASA space programs to generate power for satellites and space capsules.
Since then, fuel cells have been used in many other applications. Fuel cells are used for primary and backup power for commercial, industrial and residential buildings and in remote or inaccessible areas. They are also used to power fuel cell vehicles, including forklifts, automobiles, buses, boats, motorcycles and submarines.
There are many types of fuel cells, but they all consist of an anode, a cathode, and an electrolyte that allows positively charged hydrogen ions (or protons) to move between the two sides of the fuel cell.
The anode and cathode contain catalysts that cause the fuel to undergo oxidation reactions that generate positively charged hydrogen ions and electrons. The hydrogen ions are drawn through the electrolyte after the reaction. At the same time, electrons are drawn from the anode to the cathode through an external circuit, producing direct current electricity. At the cathode, hydrogen ions, electrons, and oxygen react to form water.
As the main difference among fuel cell types is the electrolyte, fuel cells are classified by the type of electrolyte they use and by the difference in startup time ranging from 1 second for proton exchange membrane fuel cells (PEM fuel cells, or PEMFC) to 10 minutes for solid oxide fuel cells (SOFC).
Individual fuel cells produce relatively small electrical potentials, about 0.7 volts, so cells are "stacked", or placed in series, to create sufficient voltage to meet an application's requirements. In addition to electricity, fuel cells produce water, heat and, depending on the fuel source, very small amounts of nitrogen dioxide and other emissions.
The energy efficiency of a fuel cell is generally between 40–60%, or up to 85% efficient in co-generation if waste heat is captured for use.
The fuel cell market is growing, and in 2013 Pike Research estimated that the stationary fuel cell market will reach 50 GW by 2020.
Click here to read the Scientific American article (7/3/2008): "Can Hydrogen derived from a Fuel Cell Economically Replace Gasoline?"
For further amplification about Fuel Cell technology, click on of the following blue hyperlinks:
- History
- Types of fuel cells; design
- Applications
- Markets and economics
- Research and development
- See also:
- Alkaline Anion Exchange Membrane Fuel Cells
- Bio-nano generator
- Cryptophane
- Energy development
- Fuel Cell Development Information Center
- Fuel Cells and Hydrogen Joint Technology Initiative (in Europe)
- Glossary of fuel cell terms
- Grid energy storage
- Hydrogen reformer
- Hydrogen storage
- Hydrogen technologies
- Microgeneration
- Water splitting
- PEM electrolysis
- External links:
- H2-international – e-journal on hydrogen and fuel cells
- Fuel Cell Today – Market-based intelligence on the fuel cell industry
- Fuel starvation in a hydrogen fuel cell animation
- Animation how a fuel cell works and applications
- Fuel Cell Origins: 1840–1890
- EERE: Hydrogen, Fuel Cells and Infrastructure Technologies Program
- Thermodynamics of electrolysis of water and hydrogen fuel cells
- Fuel Cell and Hydrogen Energy Association
- DoITPoMS Teaching and Learning Package- "Fuel Cells"
- Solar Hydrogen Fuel Cell Water Heating
- Fuel Cell Technology – One for the Future
Geothermal Energy, Geothermal Power, and Renewable Thermal Energy Pictured below: Clockwise from Upper Left: Geothermal Energy Generating station; Thermal Energy Cooling/heating Power System, and Geothermal Power Station.
Geothermal energy is thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the temperature of matter.
The geothermal energy of the Earth's crust originates from the original formation of the planet and from radioactive decay of materials (in currently uncertain but possibly roughly equal proportions).
The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface.
Earth's internal heat is thermal energy generated from radioactive decay and continual heat loss from Earth's formation. Temperatures at the core–mantle boundary may reach over 4000 °C (7,200 °F). The high temperature and pressure in Earth's interior cause some rock to melt and solid mantle to behave plastically, resulting in portions of mantle convecting upward since it is lighter than the surrounding rock. Rock and water is heated in the crust, sometimes up to 370 °C (700 °F).
From hot springs, geothermal energy has been used for bathing since Paleolithic times and for space heating since ancient Roman times, but it is now better known for electricity generation. Worldwide, 11,700 megawatts (MW) of geothermal power is online in 2013.
An additional 28 gigawatts of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications in 2010.
Geothermal power is cost-effective, reliable, sustainable, and environmentally friendly, but has historically been limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded the range and size of viable resources, especially for applications such as home heating, opening a potential for widespread exploitation.
Geothermal wells release greenhouse gases trapped deep within the earth, but these emissions are much lower per energy unit than those of fossil fuels. As a result, geothermal power has the potential to help mitigate global warming if widely deployed in place of fossil fuels.
The Earth's geothermal resources are theoretically more than adequate to supply humanity's energy needs, but only a very small fraction may be profitably exploited. Drilling and exploration for deep resources is very expensive. Forecasts for the future of geothermal power depend on assumptions about technology, energy prices, subsidies, and interest rates.
Pilot programs like EWEB's customer opt in Green Power Program show that customers would be willing to pay a little more for a renewable energy source like geothermal.
But as a result of government assisted research and industry experience, the cost of generating geothermal power has decreased by 25% over the past two decades. In 2001, geothermal energy costs between two and ten US cents per kWh.
Click here for more information.
___________________________________________________________________________
Geothermal power is power generated by geothermal energy (see above). Technologies in use include dry steam power stations, flash steam power stations and binary cycle power stations. Geothermal electricity generation is currently used in 24 countries, while geothermal heating is in use in 70 countries.
As of 2015, worldwide geothermal power capacity amounts to 12.8 gigawatts (GW), of which 28 percent or 3,548 megawatts are installed in the United States. International markets grew at an average annual rate of 5 percent over the last three years and global geothermal power capacity is expected to reach 14.5–17.6 GW by 2020.
Based on current geologic knowledge and technology the GEA publicly discloses, the Geothermal Energy Association (GEA) estimates that only 6.5 percent of total global potential has been tapped so far, while the IPCC reported geothermal power potential to be in the range of 35 GW to 2 TW. Countries generating more than 15 percent of their electricity from geothermal sources include El Salvador, Kenya, the Philippines, Iceland and Costa Rica.
Geothermal power is considered to be a sustainable, renewable source of energy because the heat extraction is small compared with the Earth's heat content. The greenhouse gas emissions of geothermal electric stations are on average 45 grams of carbon dioxide per kilowatt-hour of electricity, or less than 5 percent of that of conventional coal-fired plants.
Click here for more about Geothermal Power.
___________________________________________________________________________
Renewable thermal energy is the technology of gathering thermal energy from a renewable energy source for immediate use or for storage in a thermal battery for later use.
An example of Renewable Thermal is a Geothermal Heat Pump (GHP) system, where excess thermal energy due to solar heating from the sun is removed from the structure via the heating and cooling system and stored in the ground, and that same energy is then extracted from the ground to later heat the same building in another season.
This example system is "renewable" because the source of excess heat energy is a reliably recurring process that occurs each summer season; in this case it is even a natural renewable energy source.
Click here for more about Renewable Thermal Energy.
The geothermal energy of the Earth's crust originates from the original formation of the planet and from radioactive decay of materials (in currently uncertain but possibly roughly equal proportions).
The geothermal gradient, which is the difference in temperature between the core of the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface.
Earth's internal heat is thermal energy generated from radioactive decay and continual heat loss from Earth's formation. Temperatures at the core–mantle boundary may reach over 4000 °C (7,200 °F). The high temperature and pressure in Earth's interior cause some rock to melt and solid mantle to behave plastically, resulting in portions of mantle convecting upward since it is lighter than the surrounding rock. Rock and water is heated in the crust, sometimes up to 370 °C (700 °F).
From hot springs, geothermal energy has been used for bathing since Paleolithic times and for space heating since ancient Roman times, but it is now better known for electricity generation. Worldwide, 11,700 megawatts (MW) of geothermal power is online in 2013.
An additional 28 gigawatts of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications in 2010.
Geothermal power is cost-effective, reliable, sustainable, and environmentally friendly, but has historically been limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded the range and size of viable resources, especially for applications such as home heating, opening a potential for widespread exploitation.
Geothermal wells release greenhouse gases trapped deep within the earth, but these emissions are much lower per energy unit than those of fossil fuels. As a result, geothermal power has the potential to help mitigate global warming if widely deployed in place of fossil fuels.
The Earth's geothermal resources are theoretically more than adequate to supply humanity's energy needs, but only a very small fraction may be profitably exploited. Drilling and exploration for deep resources is very expensive. Forecasts for the future of geothermal power depend on assumptions about technology, energy prices, subsidies, and interest rates.
Pilot programs like EWEB's customer opt in Green Power Program show that customers would be willing to pay a little more for a renewable energy source like geothermal.
But as a result of government assisted research and industry experience, the cost of generating geothermal power has decreased by 25% over the past two decades. In 2001, geothermal energy costs between two and ten US cents per kWh.
Click here for more information.
___________________________________________________________________________
Geothermal power is power generated by geothermal energy (see above). Technologies in use include dry steam power stations, flash steam power stations and binary cycle power stations. Geothermal electricity generation is currently used in 24 countries, while geothermal heating is in use in 70 countries.
As of 2015, worldwide geothermal power capacity amounts to 12.8 gigawatts (GW), of which 28 percent or 3,548 megawatts are installed in the United States. International markets grew at an average annual rate of 5 percent over the last three years and global geothermal power capacity is expected to reach 14.5–17.6 GW by 2020.
Based on current geologic knowledge and technology the GEA publicly discloses, the Geothermal Energy Association (GEA) estimates that only 6.5 percent of total global potential has been tapped so far, while the IPCC reported geothermal power potential to be in the range of 35 GW to 2 TW. Countries generating more than 15 percent of their electricity from geothermal sources include El Salvador, Kenya, the Philippines, Iceland and Costa Rica.
Geothermal power is considered to be a sustainable, renewable source of energy because the heat extraction is small compared with the Earth's heat content. The greenhouse gas emissions of geothermal electric stations are on average 45 grams of carbon dioxide per kilowatt-hour of electricity, or less than 5 percent of that of conventional coal-fired plants.
Click here for more about Geothermal Power.
___________________________________________________________________________
Renewable thermal energy is the technology of gathering thermal energy from a renewable energy source for immediate use or for storage in a thermal battery for later use.
An example of Renewable Thermal is a Geothermal Heat Pump (GHP) system, where excess thermal energy due to solar heating from the sun is removed from the structure via the heating and cooling system and stored in the ground, and that same energy is then extracted from the ground to later heat the same building in another season.
This example system is "renewable" because the source of excess heat energy is a reliably recurring process that occurs each summer season; in this case it is even a natural renewable energy source.
Click here for more about Renewable Thermal Energy.
Sustainable Energy and its Sources
YouTube Video: Renewable Energy Primer by the National Geographic Channel: A new wave of technologies is on the verge of producing energy that's clean, renewable, and most importantly, affordable
Pictured below:
(L) One of many power plants at The Geysers,
(C) a geothermal power field in northern California, with a total output of over 750 MW;
(R) Hydroelectric dams are one of the most widely deployed sources of sustainable energy (Courtesy of Qurren CC BY-SA 3.0); and Windmill Farm
Sustainable energy is energy that is consumed at insignificant rates compared to its supply and with manageable collateral effects, especially environmental effects. Another common definition of sustainable energy is an energy system that serves the needs of the present without compromising the ability of future generations to meet their needs.
The organizing principle for sustainability is sustainable development, which includes the four interconnected domains: ecology, economics, politics and culture. Sustainability science is the study of sustainable development and environmental science.
Technologies that promote sustainable energy include renewable energy sources, such as
Costs have fallen dramatically in recent years, and continue to fall. Most of these technologies are either economically competitive or close to being so. Increasingly, effective government policies support investor confidence and these markets are expanding.
Considerable progress is being made in the energy transition from fossil fuels to ecologically sustainable systems, to the point where many studies support 100% renewable energy.
Energy efficiency and renewable energy are said to be the twin pillars of sustainable energy. Some ways in which sustainable energy has been defined are:
This sets sustainable energy apart from other renewable energy terminology such as alternative energy by focusing on the ability of an energy source to continue providing energy. Sustainable energy can produce some pollution of the environment, as long as it is not sufficient to prohibit heavy use of the source for an indefinite amount of time.
Sustainable energy is also distinct from low-carbon energy, which is sustainable only in the sense that it does not add to the CO2 in the atmosphere.
Green Energy is energy that can be extracted, generated, and/or consumed without any significant negative impact to the environment. The planet has a natural capability to recover which means pollution that does not go beyond that capability can still be termed green.
Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit.
The U.S. Environmental Protection Agency defines green power as electricity produced from solar, wind, geothermal, biogas, biomass and low-impact small hydroelectric sources. Customers often buy green power for avoided environmental impacts and its greenhouse gas reduction benefits.
Renewable Energy Technologies:
Main articles: Renewable energy and Renewable energy commercialization
Renewable energy technologies are essential contributors to sustainable energy as they generally contribute to world energy security, reducing dependence on fossil fuel resources, and providing opportunities for mitigating greenhouse gases.
The International Energy Agency (IEA) states that:
Conceptually, one can define three generations of renewables technologies, reaching back more than 100 years :
First- and second-generation technologies have entered the markets, and third-generation technologies heavily depend on long term research and development commitments, where the public sector has a role to play.
Regarding energy used by vehicles, a comprehensive 2008 cost-benefit analysis review was conducted of sustainable energy sources and usage combinations in the context of global warming and other dominating issues; it ranked wind power generation combined with battery electric vehicles (BEV) and hydrogen fuel cell vehicles (HFCVs) as the most efficient.
Wind was followed by,
The study states: "In sum, use of wind, CSP, geothermal, tidal, PV, wave, and hydro to provide electricity for BEVs and HFCVs and, by extension, electricity for the residential, industrial, and commercial sectors, will result in the most benefit among the options considered. The combination of these technologies should be advanced as a solution to global warming, air pollution, and energy security. Coal-CCS and nuclear offer less benefit thus represent an opportunity cost loss, and the biofuel options provide no certain benefit and the greatest negative impacts."
First-generation Technologies:
First-generation technologies are most competitive in locations with abundant resources. Their future use depends on the exploration of the available resource potential, particularly in developing countries, and on overcoming challenges related to the environment and social acceptance. (Courtesy of International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet)
Among sources of renewable energy, hydroelectric plants have the advantages of being long-lived—many existing plants have operated for more than 100 years. Also, hydroelectric plants are clean and have few emissions. Criticisms directed at large-scale hydroelectric plants include: dislocation of people living where the reservoirs are planned, and release of significant amounts of carbon dioxide during construction and flooding of the reservoir.
However, it has been found that high emissions are associated only with shallow reservoirs in warm (tropical) locales, and recent innovations in hydropower turbine technology are enabling efficient development of low-impact run-of-the-river hydroelectricity projects.
Generally speaking, hydroelectric plants produce much lower life-cycle emissions than other types of generation. Hydroelectric power, which underwent extensive development during growth of electrification in the 19th and 20th centuries, is experiencing resurgence of development in the 21st century. The areas of greatest hydroelectric growth are the booming economies of Asia. China is the development leader; however, other Asian nations are installing hydropower at a rapid pace. This growth is driven by much increased energy costs—especially for imported energy—and widespread desires for more domestically produced, clean, renewable, and economical generation.
Geothermal power plants can operate 24 hours per day, providing base-load capacity, and the world potential capacity for geothermal power generation is estimated at 85 GW over the next 30 years. However, geothermal power is accessible only in limited areas of the world, including the United States, Central America, East Africa, Iceland, Indonesia, and the Philippines.
The costs of geothermal energy have dropped substantially from the systems built in the 1970s. Geothermal heat generation can be competitive in many countries producing geothermal power, or in other regions where the resource is of a lower temperature.
Enhanced geothermal system (EGS) technology does not require natural convective hydrothermal resources, so it can be used in areas that were previously unsuitable for geothermal power, if the resource is very large. EGS is currently under research at the U.S. Department of Energy.
Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production.
One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.
Second-generation Technologies:
Markets for second-generation technologies are strong and growing, but only in a few countries. The challenge is to broaden the market base for continued growth worldwide. Strategic deployment in one country not only reduces technology costs for users there, but also for those in other countries, contributing to overall cost reductions and performance improvement. (Courtesy of International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet)
Solar heating systems are a well known second-generation technology and generally consist of solar thermal collectors, a fluid system to move the heat from the collector to its point of usage, and a reservoir or tank for heat storage and subsequent use.
The systems may be used to heat domestic hot water, swimming pool water, or for space heating. The heat can also be used for industrial applications or as an energy input for other uses such as cooling equipment.
In many climates, a solar heating system can provide a very high percentage (50 to 75%) of domestic hot water energy. Energy received from the sun by the earth is that of electromagnetic radiation. Light ranges of visible, infrared, ultraviolet, x-rays, and radio waves received by the earth through solar energy.
The highest power of radiation comes from visible light. Solar power is complicated due to changes in seasons and from day to night. Cloud cover can also add to complications of solar energy, and not all radiation from the sun reaches earth because it is absorbed and dispersed due to clouds and gases within the earth's atmospheres.
In the 1980s and early 1990s, most photovoltaic modules provided remote-area power supply, but from around 1995, industry efforts have focused increasingly on developing building integrated photovoltaics and power plants for grid connected applications (see photovoltaic power stations article for details).
Currently the largest photovoltaic power plant in North America is the Nellis Solar Power Plant (15 MW). There is a proposal to build a Solar power station in Victoria, Australia, which would be the world's largest PV power station, at 154 MW. Other large photovoltaic power stations include the Girassol solar power plant (62 MW), and the Waldpolenz Solar Park (40 MW).
Some of the second-generation renewable energy sources, such as wind power, have high potential and have already realized relatively low production costs. At the end of 2008, worldwide wind farm capacity was 120,791 megawatts (MW), representing an increase of 28.8 percent during the year, and wind power produced some 1.3% of global electricity consumption. Wind power accounts for approximately 20% of electricity use in Denmark, 9% in Spain, and 7% in Germany. However, it may be difficult to site wind turbines in some areas for aesthetic or environmental reasons, and it may be difficult to integrate wind power into electricity grids in some cases.
Solar thermal power stations have been successfully operating in California commercially since the late 1980s, including the largest solar power plant of any kind, the 350 MW Solar Energy Generating Systems. Nevada Solar One is another 64MW plant which has recently opened. Other parabolic trough power plants being proposed are two 50MW plants in Spain, and a 100MW plant in Israel.
Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country's automotive fuel. As a result of this, together with the exploitation of domestic deep water oil sources, Brazil, which years ago had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in oil.
Most cars on the road today in the U.S. can run on blends of up to 10% ethanol, and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. Ford, DaimlerChrysler, and GM are among the automobile companies that sell "flexible-fuel" cars, trucks, and minivans that can use gasoline and ethanol blends ranging from pure gasoline up to 85% ethanol (E85). By mid-2006, there were approximately six million E85-compatible vehicles on U.S. roads.
Third-generation Technologies:
Third-generation technologies are not yet widely demonstrated or commercialised. They are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and RD&D funding. These newest technologies include,
Bio-fuels may be defined as "renewable," yet may not be "sustainable," due to soil degradation. As of 2012, 40% of American corn production goes toward ethanol. Ethanol takes up a large percentage of "Clean Energy Use" when in fact, it is still debatable whether ethanol should be considered as a "Clean Energy."
According to the International Energy Agency, new bioenergy (biofuel) technologies being developed today, notably cellulose ethanol bio-refineries, could allow biofuels to play a much bigger role in the future than previously thought. Cellulosic ethanol can be made from plant matter composed primarily of inedible cellulose fibers that form the stems and branches of most plants. Crop residues (such as corn stalks, wheat straw and rice straw), wood waste and municipal solid waste are potential sources of cellulose biomass. Dedicated energy crops, such as switchgrass, are also promising cellulose sources that can be sustainably produced in many regions of the United States.
Ocean Energy:
In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW, and costs are put at 8.5 million euro.
Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW. Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines. (see also Wave farm).
Tidal Power:
In 2007, the world's first turbine to create commercial amounts of energy using tidal power was installed in the narrows of Strangford Lough in Ireland. The 1.2 MW underwater tidal electricity generator takes advantage of the fast tidal flow in the lough which can be up to 4m/s.
Although the generator is powerful enough to power up to a thousand homes, the turbine has a minimal environmental impact, as it is almost entirely submerged, and the rotors turn slowly enough that they pose no danger to wildlife.
Solar Power Panels:
Solar power panels that use nanotechnology, which can create circuits out of individual silicon molecules, may cost half as much as traditional photovoltaic cells, according to executives and investors involved in developing the products.
Nanosolar has secured more than $100 million from investors to build a factory for nanotechnology thin-film solar panels. The company's plant has a planned production capacity of 430 megawatts peak power of solar cells per year. Commercial production started and first panels have been shipped to customers in late 2007.
Artificial Photosynthesis:
Large national and regional research projects on artificial photosynthesis are designing nanotechnology-based systems that use solar energy to split water into hydrogen fuel. A proposal has been made for a Global Artificial Photosynthesis project In 2011, researchers at the Massachusetts Institute of Technology (MIT) developed what they are calling an "Artificial Leaf", which is capable of splitting water into hydrogen and oxygen directly from solar power when dropped into a glass of water. One side of the "Artificial Leaf" produces bubbles of hydrogen, while the other side produces bubbles of oxygen.
Most current solar power plants are made from an array of similar units where each unit is continuously adjusted, e.g., with some step motors, so that the light converter stays in focus of the sun light. The cost of focusing light on converters such as high-power solar panels, Stirling engine, etc. can be dramatically decreased with a simple and efficient rope mechanics. In this technique many units are connected with a network of ropes so that pulling two or three ropes is sufficient to keep all light converters simultaneously in focus as the direction of the sun changes.
Japan and China have national programs aimed at commercial scale Space-Based Solar Power (SBSP). The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.
A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge.
Enabling technologies for renewable energy:
Heat pumps and Thermal energy storage are classes of technologies that can enable the utilization of renewable energy sources that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed.
While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).
Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems.
Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. Borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.
Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump.
Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).
Energy efficiency:
Moving towards energy sustainability will require changes not only in the way energy is supplied, but in the way it is used, and reducing the amount of energy required to deliver various goods or services is essential. Opportunities for improvement on the demand side of the energy equation are as rich and diverse as those on the supply side, and often offer significant economic benefits.
Renewable energy and energy efficiency are sometimes said to be the "twin pillars" of sustainable energy policy. Both resources must be developed in order to stabilize and reduce carbon dioxide emissions. Efficiency slows down energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too fast, renewable energy development will chase a receding target.
A recent historical analysis has demonstrated that the rate of energy efficiency improvements has generally been outpaced by the rate of growth in energy demand, which is due to continuing economic and population growth. As a result, despite energy efficiency gains, total energy use and related carbon emissions have continued to increase.
Thus, given the thermodynamic and practical limits of energy efficiency improvements, slowing the growth in energy demand is essential. However, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total emissions; reducing the carbon content of energy sources is also needed. Any serious vision of a sustainable energy economy thus requires commitments to both renewable and efficiency.
Renewable energy (and energy efficiency) are no longer niche sectors that are promoted only by governments and environmentalists. The increased levels of investment and the fact that much of the capital is coming from more conventional financial actors suggest that sustainable energy options are now becoming mainstream.
An example of this would be The Alliance to Save Energy's Project with Stahl Consolidated Manufacturing, (Huntsville, Alabama, USA) (StahlCon 7), a patented generator shaft designed to reduce emissions within existing power generating systems, granted publishing rights to the Alliance in 2007.
Climate change concerns coupled with high oil prices and increasing government support are driving increasing rates of investment in the sustainable energy industries, according to a trend analysis from the United Nations Environment Program. According to UNEP, global investment in sustainable energy in 2007 was higher than previous levels, with $148 billion of new money raised in 2007, an increase of 60% over 2006. Total financial transactions in sustainable energy, including acquisition activity, was $204 billion.
Investment flows in 2007 broadened and diversified, making the overall picture one of greater breadth and depth of sustainable energy use. The mainstream capital markets are "now fully receptive to sustainable energy companies, supported by a surge in funds destined for clean energy investment".
Smart-grid technology:
Main article: Smart grid
Smart grid refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation. These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries.
They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers—mostly seen in big improvements in energy efficiency on the electricity grid and in the energy users’ homes and offices.
Green energy and green power:
Green energy includes natural energetic processes that can be harnessed with little pollution. Green power is electricity generated from renewable energy sources like,
Some people, including Greenpeace founder and first member Patrick Moore, George Monbiot, Bill Gates and James Lovelock have specifically classified nuclear power as green energy.
Others, including Greenpeace's Phil Radford disagree, claiming that the problems associated with radioactive waste and the risk of nuclear accidents (such as the Chernobyl disaster) pose an unacceptable risk to the environment and to humanity.
However, newer nuclear reactor designs are capable of utilizing what is now deemed "nuclear waste" until it is no longer (or dramatically less) dangerous, and have design features that greatly minimize the possibility of a nuclear accident. These designs have yet to be proven. (See: Integral Fast Reactor)
Some have argued that although green energy is a commendable effort in solving the world's increasing energy consumption, it must be accompanied by a cultural change that encourages the decrease of the world's appetite for energy.
In several countries with common carrier arrangements, electricity retailing arrangements make it possible for consumers to purchase green electricity (renewable electricity) from either their utility or a green power provider.
When energy is purchased from the electricity network, the power reaching the consumer will not necessarily be generated from green energy sources. The local utility company, electric company, or state power pool buys their electricity from electricity producers who may be generating from fossil fuel, nuclear or renewable energy sources.
In many countries green energy currently provides a very small amount of electricity, generally contributing less than 2 to 5% to the overall pool. In some U.S. states, local governments have formed regional power purchasing pools using Community Choice Aggregation and Solar Bonds to achieve a 51% renewable mix or higher, such as in the City of San Francisco.
By participating in a green energy program a consumer may be having an effect on the energy sources used and ultimately might be helping to promote and expand the use of green energy. They are also making a statement to policy makers that they are willing to pay a price premium to support renewable energy.
Green energy consumers either obligate the utility companies to increase the amount of green energy that they purchase from the pool (so decreasing the amount of non-green energy they purchase), or directly fund the green energy through a green power provider.
If insufficient green energy sources are available, the utility must develop new ones or contract with a third party energy supplier to provide green energy, causing more to be built. However, there is no way the consumer can check whether or not the electricity bought is "green" or otherwise.
In some countries such as the Netherlands, electricity companies guarantee to buy an equal amount of 'green power' as is being used by their green power customers. The Dutch government exempts green power from pollution taxes, which means green power is hardly any more expensive than other power.
In the United States, one of the main problems with purchasing green energy through the electrical grid is the current centralized infrastructure that supplies the consumer’s electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO2 emissions, higher energy costs, and power quality issues. An additional $450 billion will need to be invested to expand this fledgling system over the next 20 years to meet increasing demand.
In addition, this centralized system is now being further overtaxed with the incorporation of renewable energies such as wind, solar, and geothermal energies. Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible.
In addition, despite the amount of renewable energy produced or the economic viability of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing changes to the electrical grid that will accommodate a mixed-fuel economy.
However, several initiatives are being proposed to mitigate these distribution problems. First and foremost, the most effective way to reduce USA’s CO2 emissions and slow global warming is through conservation efforts.
Opponents of the current US electrical grid have also advocated for decentralizing the grid. This system would increase efficiency by reducing the amount of energy lost in transmission. It would also be economically viable as it would reduce the amount of power lines that will need to be constructed in the future to keep up with demand. Merging heat and power in this system would create added benefits and help to increase its efficiency by up to 80-90%. This is a significant increase from the current fossil fuel plants which only have an efficiency of 34%.
A more recent concept for improving our electrical grid is to beam microwaves from Earth-orbiting satellites or the moon to directly when and where there is demand. The power would be generated from solar energy captured on the lunar surface In this system, the receivers would be "broad, translucent tent-like structures that would receive microwaves and convert them to electricity".
NASA said in 2000 that the technology was worth pursuing but it is still too soon to say if the technology will be cost-effective.
Local Green Energy Systems:
Main article: Microgeneration
Those not satisfied with the third-party grid approach to green energy via the power grid can install their own locally based renewable energy system. Renewable energy electrical systems from solar to wind to even local hydro-power in some cases, are some of the many types of renewable energy systems available locally.
Additionally, for those interested in heating and cooling their dwelling via renewable energy, geothermal heat pump systems that tap the constant temperature of the earth, which is around 7 to 15 degrees Celsius a few feet underground and increases dramatically at greater depths, are an option over conventional natural gas and petroleum-fueled heat approaches.
Also, in geographic locations where the Earth's Crust is especially thin, or near volcanoes (as is the case in Iceland) there exists the potential to generate even more electricity than would be possible at other sites, thanks to a more significant temperature gradient at these locales.
The advantage of this approach in the United States is that many states offer incentives to offset the cost of installation of a renewable energy system. In California, Massachusetts and several other U.S. states, a new approach to community energy supply called Community Choice Aggregation has provided communities with the means to solicit a competitive electricity supplier and use municipal revenue bonds to finance development of local green energy resources.
Individuals are usually assured that the electricity they are using is actually produced from a green energy source that they control. Once the system is paid for, the owner of a renewable energy system will be producing their own renewable electricity for essentially no cost and can sell the excess to the local utility at a profit.
Using green energy:
Main articles: Energy storage, Grid energy storage, and Bio-energy with carbon capture and storage.
Renewable energy, after its generation, needs to be stored in a medium for use with autonomous devices as well as vehicles. Also, to provide household electricity in remote areas (that is areas which are not connected to the mains electricity grid), energy storage is required for use with renewable energy. Energy generation and consumption systems used in the latter case are usually stand-alone power systems.
Some examples are:
Usually however, renewable energy is derived from the mains electricity grid. This means that energy storage is mostly not used, as the mains electricity grid is organized to produce the exact amount of energy being consumed at that particular moment.
Energy production on the mains electricity grid is always set up as a combination of (large-scale) renewable energy plants, as well as other power plants as fossil-fuel power plants and nuclear power. This combination however, which is essential for this type of energy supply (as e.g. wind turbines, solar power plants etc.) can only produce when the wind blows and the sun shines.
This is also one of the main drawbacks of the system as fossil fuel power plants are polluting and are a main cause of global warming (nuclear power being an exception). Although fossil fuel power plants too can be made emissionless (through carbon capture and storage), as well as renewable (if the plants are converted to e.g. biomass) the best solution is still to phase out the latter power plants over time.
Nuclear power plants too can be more or less eliminated from their problem of nuclear waste through the use of nuclear reprocessing and newer plants as fast breeder and nuclear fusion plants.
Renewable energy power plants do provide a steady flow of energy. For example, hydropower plants, ocean thermal plants, osmotic power plants all provide power at a regulated pace, and are thus available power sources at any given moment (even at night, windstill moments etc.).
At present however, the number of steady-flow renewable energy plants alone is still too small to meet energy demands at the times of the day when the irregular producing renewable energy plants cannot produce power.
Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe.
Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main sources of energy on the mains electricity net and replacing them will not be possible overnight.
Several large-scale energy storage suggestions for the grid have been done. Worldwide there is over 100 GW of Pumped-storage hydroelectricity. This improves efficiency and decreases energy losses but a conversion to an energy storing mains electricity grid is a very costly solution.
Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is batteries in electric cars that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure. Also, energy storage apparatus' as car batteries are also built with materials that pose a threat to the environment (e.g. Lithium).
The combined production of batteries for such a large part of the population would still have environmental concerns. Besides car batteries however, other Grid energy storage projects make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).
Carbon-neutral and negative fuels:
Main article: Carbon neutral fuel
A carbon-neutral fuel is a synthetic fuel – such as methane, gasoline, diesel fuel or jet fuel – produced from renewable or nuclear energy used to hydrogenate waste carbon dioxide recycled from power plant flue-gas emissions, recovered from automotive exhaust gas, or derived from carbonic acid in seawater. Such fuels are carbon-neutral because they do not result in a net increase in atmospheric greenhouse gases.
To the extent that carbon-neutral fuels displace fossil fuels, or if they are produced from waste carbon or seawater carbonic acid, and their combustion is subject to carbon capture at the flue or exhaust pipe, they result in negative carbon dioxide emission and net carbon dioxide removal from the atmosphere, and thus constitute a form of greenhouse gas remediation.
Such fuels are produced by the electrolysis of water to make hydrogen used in turn in the Sabatier reaction to produce methane which may then be stored to be burned later in power plants as synthetic natural gas, transported by pipeline, truck, or tanker ship, or be used in gas to liquids processes such as the Fischer–Tropsch process to make traditional transportation or heating fuels.
Green energy and labeling in The United States:
The United States Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Center for Resource Solutions (CRS) recognizes the voluntary purchase of electricity from renewable energy sources (also called renewable electricity or green electricity) as green power.
The most popular way to purchase renewable energy as revealed by NREL data is through purchasing Renewable Energy Certificates (RECs). According to a Natural Marketing Institute (NMI) survey 55 percent of American consumers want companies to increase their use of renewable energy.
DOE selected six companies for its 2007 Green Power Supplier Awards, including:
The combined green power provided by those six winners equals more than 5 billion kilowatt-hours per year, which is enough to power nearly 465,000 average U.S. households. In 2014, Arcadia Power made RECS available to homes and businesses in all 50 states, allowing consumers to use "100% green power" as defined by the EPA's Green Power Partnership.
The U.S. Environmental Protection Agency (USEPA) Green Power Partnership is a voluntary program that supports the organizational procurement of renewable electricity by offering expert advice, technical support, tools and resources. This can help organizations lower the transaction costs of buying renewable power, reduce carbon footprint, and communicate its leadership to key stakeholders.
Throughout the country, more than half of all U.S. electricity customers now have an option to purchase some type of green power product from a retail electricity provider. Roughly one-quarter of the nation's utilities offer green power programs to customers, and voluntary retail sales of renewable energy in the United States totaled more than 12 billion kilowatt-hours in 2006, a 40% increase over the previous year.
Sustainable energy research:
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.
Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners. Sandia has a total budget of $2.4 billion while NREL has a budget of $375 million.
Scientific production towards sustainable energy systems is rising exponentially, growing from about 500 English journal papers only about renewable energy in 1992 to almost 9,000 papers in 2011.
Solar:
Main articles: Solar power and Artificial photosynthesis
The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 16% of the sunlight that hits them into electricity.
At this rate, many experts believe that solar energy is not efficient enough to be economically sustainable given the cost to produce the panels themselves. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs.
The NREL solar program has a budget of around $75 million and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation. The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.
Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.
Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate. Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.
Space-Based Solar Power:
Space-Based Solar Power Satellites seek to overcome the problems of storage and provide civilization-scale power that is clean, constant, and global. Japan and China have active national programs aimed at commercial scale Space-Based Solar Power (SBSP), and both nation's hope to orbit demonstrations in the 2030s.
The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.
A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge with the following pitch and vision video. Northrop Grumman is funding CALTECH with $17.5 million for an ultra lightweight design. Keith Henson recently posted a video of a "bootstrapping" approach.
Wind:
Main articles: Wind power and Wind farm
Wind energy research dates back several decades to the 1970s when NASA developed an analytical model to predict wind turbine power generation during high winds. Today, both Sandia National Laboratories and National Renewable Energy Laboratory have programs dedicated to wind research.
Sandia’s laboratory focuses on the advancement of materials, aerodynamics, and sensors. The NREL wind projects are centered on improving wind plant power production, reducing their capital costs, and making wind energy more cost effective overall.
The Field Laboratory for Optimized Wind Energy (FLOWE) at Caltech was established to research renewable approaches to wind energy farming technology practices that have the potential to reduce the cost, size, and environmental impact of wind energy production.
The president of Sky WindPower Corporation thinks that wind turbines will be able to produce electricity at a cent/kWh at an average which in comparison to coal-generated electricity is a fractional of the cost.
A wind farm is a group of wind turbines in the same location used to produce electric power. A large wind farm may consist of several hundred individual wind turbines, and cover an extended area of hundreds of square miles, but the land between the turbines may be used for agricultural or other purposes. A wind farm may also be located offshore.
Many of the largest operational onshore wind farms are located in the USA and China. The Gansu Wind Farm in China has over 5,000 MW installed with a goal of 20,000 MW by 2020. China has several other "wind power bases" of similar size.
The Alta Wind Energy Center in California is the largest onshore wind farm outside of China, with a capacity of 1020 MW of power. Europe leads in the use of wind power with almost 66 GW, about 66 percent of the total globally, with Denmark in the lead according to the countries installed per-capita capacity.
As of February 2012, the Walney Wind Farm in United Kingdom is the largest offshore wind farm in the world at 367 MW, followed by Thanet Wind Farm (300 MW), also in the UK.
There are many large wind farms under construction and these include,
Wind power has expanded quickly, it's share of worldwide electricity usage at the end of 2014 was 3.1%.
Carbon-neutral and Negative Fuels:
Main articles: Carbon-neutral fuel and Methanol economy
Carbon-neutral fuels are synthetic fuels (including methane, gasoline, diesel fuel, jet fuel or ammonia) produced by hydrogenating waste carbon dioxide recycled from power plant flue-gas emissions, recovered from automotive exhaust gas, or derived from carbonic acid in seawater.
Commercial fuel synthesis companies suggest they can produce synthetic fuels for less than petroleum fuels when oil costs more than $55 per barrel. Renewable methanol (RM) is a fuel produced from hydrogen and carbon dioxide by catalytic hydrogenation where the hydrogen has been obtained from water electrolysis. It can be blended into transportation fuel or processed as a chemical feedstock.
The George Olah carbon dioxide recycling plant operated by Carbon Recycling International in Grindavík, Iceland has been producing 2 million liters of methanol transportation fuel per year from flue exhaust of the Svartsengi Power Station since 2011. It has the capacity to produce 5 million liters per year.
A 250 kilowatt methane synthesis plant was constructed by the Center for Solar Energy and Hydrogen Research (ZSW) at Baden-Württemberg and the Fraunhofer Society in Germany and began operating in 2010. It is being upgraded to 10 megawatts, scheduled for completion in autumn, 2012.
Audi has constructed a carbon-neutral liquefied natural gas (LNG) plant in Werlte, Germany. The plant is intended to produce transportation fuel to offset LNG used in their A3 Sportback g-tron automobiles, and can keep 2,800 metric tons of CO2 out of the environment per year at its initial capacity.
Other commercial developments are taking place in Columbia, South Carolina, Camarillo, California, and Darlington, England.
Such fuels are considered carbon-neutral because they do not result in a net increase in atmospheric greenhouse gases. To the extent that synthetic fuels displace fossil fuels, or if they are produced from waste carbon or seawater carbonic acid, and their combustion is subject to carbon capture at the flue or exhaust pipe, they result in negative carbon dioxide emission and net carbon dioxide removal from the atmosphere, and thus constitute a form of greenhouse gas remediation.
Such renewable fuels alleviate the costs and dependency issues of imported fossil fuels without requiring either electrification of the vehicle fleet or conversion to hydrogen or other fuels, enabling continued compatible and affordable vehicles.
Carbon-neutral fuels offer relatively low cost energy storage, alleviating the problems of wind and solar intermittency, and they enable distribution of wind, water, and solar power through existing natural gas pipelines.
Nighttime wind power is considered the most economical form of electrical power with which to synthesize fuel, because the load curve for electricity peaks sharply during the warmest hours of the day, but wind tends to blow slightly more at night than during the day, so, the price of nighttime wind power is often much less expensive than any alternative. Germany has built a 250 kilowatt synthetic methane plant which they are scaling up to 10 megawatts.
Biomass:
Main articles: Biomass and Biogas
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel.
Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today; examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste.
In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including:
Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from this combustion; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution. Biomass combustion is a major contributor.
Ethanol Biofuels:
Main article: Ethanol fuel
As the primary source of biofuel in North America, many organizations are conducting research in the area of ethanol production. On the Federal level, the USDA conducts a large amount of research regarding ethanol production in the United States. Much of this research is targeted towards the effect of ethanol production on domestic food markets.
The National Renewable Energy Laboratory has conducted various ethanol research projects, mainly in the area of cellulosic ethanol. Cellulosic ethanol has many benefits over traditional corn based-ethanol. It does not take away or directly conflict with the food supply because it is produced from wood, grasses, or non-edible parts of plants. Moreover, some studies have shown cellulosic ethanol to be more cost effective and economically sustainable than corn-based ethanol.
Even if we used all the corn crop that we have in the United States and converted it into ethanol it would only produce enough fuel to serve 13 percent of the United States total gasoline consumption.
Sandia National Laboratories conducts in-house cellulosic ethanol research and is also a member of the Joint BioEnergy Institute (JBEI), a research institute founded by the United States Department of Energy with the goal of developing cellulosic biofuels.
Other Biofuels:
From 1978 to 1996, the National Renewable Energy Laboratory experimented with producing algae fuel in the "Aquatic Species Program." A self-published article by Michael Briggs, at the University of New Hampshire Biofuels Group, offers estimates for the realistic replacement of all motor vehicle fuel with biofuels by utilizing algae that have a natural oil content greater than 50%, which Briggs suggests can be grown on algae ponds at wastewater treatment plants. This oil-rich algae can then be extracted from the system and processed into biofuels, with the dried remainder further reprocessed to create ethanol.
The production of algae to harvest oil for biofuels has not yet been undertaken on a commercial scale, but feasibility studies have been conducted to arrive at the above yield estimate.
During the biofuel production process algae actually consumes the carbon dioxide in the air and turns it into oxygen through photosynthesis. In addition to its projected high yield, algaculture— unlike food crop-based biofuels — does not entail a decrease in food production, since it requires neither farmland nor fresh water. Many companies are pursuing algae bio-reactors for various purposes, including scaling up biofuels production to commercial levels.
Several groups in various sectors are conducting research on Jatropha curcas, a poisonous shrub-like tree that produces seeds considered by many to be a viable source of biofuels feedstock oil.
Much of this research focuses on improving the overall per acre oil yield of Jatropha through advancements in genetics, soil science, and horticultural practices. SG Biofuels, a San Diego-based Jatropha developer, has used molecular breeding and biotechnology to produce elite hybrid seeds of Jatropha that show significant yield improvements over first generation varieties.
The Center for Sustainable Energy Farming (CfSEF) is a Los Angeles-based non-profit research organization dedicated to Jatropha research in the areas of plant science, agronomy, and horticulture. Successful exploration of these disciplines is projected to increase Jatropha farm production yields by 200-300% in the next ten years.
Geothermal:
Main article: Geothermal electricity
Geothermal energy is produced by tapping into the thermal energy created and stored within the earth. It arises from the radioactive decay of an isotope of potassium and other elements found in the Earth's crust. Geothermal energy can be obtained by drilling into the ground, very similar to oil exploration, and then it is carried by a heat-transfer fluid (e.g. water, brine or steam).
Geothermal systems that are mainly dominated by water have the potential to provide greater benefits to the system and will generate more power. Within these liquid-dominated systems, there are possible concerns of subsidence and contamination of ground-water resources.
Therefore, protection of ground-water resources is necessary in these systems. This means that careful reservoir production and engineering is necessary in liquid-dominated geothermal reservoir systems.
Geothermal energy is considered sustainable because that thermal energy is constantly replenished. However, the science of geothermal energy generation is still young and developing economic viability. Several entities, such as the National Renewable Energy Laboratory and Sandia National Laboratories are conducting research toward the goal of establishing a proven science around geothermal energy. The International Centre for Geothermal Research (IGC), a German geosciences research organization, is largely focused on geothermal energy development research.
Hydrogen:
Main article: Hydrogen fuel
Over $1 billion of federal money has been spent on the research and development of hydrogen and a medium for energy storage in the United States.
Both the National Renewable Energy Laboratory and Sandia National Laboratories have departments dedicated to hydrogen research. Hydrogen is useful for energy storage and for use in airplanes, but is not practical for automobile use, as it is not very efficient, compared to using a battery — for the same cost a person can travel three times as far using a battery.
Thorium:
Main article: Thorium fuel cycle
There are potentially two sources of nuclear power:
However nuclear power is controversial politically and scientifically due to concerns about radioactive waste disposal, safety, the risks of a severe accident, and technical and economical problems in dismantling of old power plants.
Thorium is a fissionable material used in thorium-based nuclear power. The thorium fuel cycle claims several potential advantages over a uranium fuel cycle, including greater abundance, superior physical and nuclear properties, better resistance to nuclear weapons proliferation and reduced plutonium and actinide production. Therefore, it is sometimes referred as sustainable.
Clean energy investments:
2010 was a record year for green energy investments. According to a report from Bloomberg New Energy Finance, nearly US $243 billion was invested in wind farms, solar power, electric cars, and other alternative technologies worldwide, representing a 30 percent increase from 2009 and nearly five times the money invested in 2004.
China had $51.1 billion investment in clean energy projects in 2010, by far the largest figure for any country.
Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.
India is another rising clean energy leader. While India ranked the 10th in private clean energy investments among G-20 members in 2009, over the next 10 years it is expected to rise to the third position, with annual clean energy investment under current policies forecast to grow by 369 percent between 2010 and 2020.
It is clear that the center of growth has started to shift to the developing economies and they may lead the world in the new wave of clean energy investments.
Around the world many sub-national governments - regions, states and provinces - have aggressively pursued sustainable energy investments. In the United States, California's leadership in renewable energy was recognized by The Climate Group when it awarded former Governor Arnold Schwarzenegger its inaugural award for international climate leadership in Copenhagen in 2009.
In Australia, the state of South Australia - under the leadership of former Premier Mike Rann - has led the way with wind power comprising 26% of its electricity generation by the end of 2011, edging out coal fired generation for the first time. South Australia also has had the highest take-up per capita of household solar panels in Australia following the Rann Government's introduction of solar feed-in laws and educative campaign involving the installation of solar photovoltaic installations on the roofs of prominent public buildings, including the parliament, museum, airport and Adelaide Showgrounds pavilion and schools.
Rann, Australia's first climate change minister, passed legislation in 2006 setting targets for renewable energy and emissions cuts, the first legislation in Australia to do so.
Also, in the European Union there is a clear trend of promoting policies encouraging investments and financing for sustainable energy in terms of energy efficiency, innovation in energy exploitation and development of renewable resources, with increased consideration of environmental aspects and sustainability.
Related Journals:
Among scientific journals related to the interdisciplinary study of sustainable energy are:
See Also:
The organizing principle for sustainability is sustainable development, which includes the four interconnected domains: ecology, economics, politics and culture. Sustainability science is the study of sustainable development and environmental science.
Technologies that promote sustainable energy include renewable energy sources, such as
- hydroelectricity,
- solar energy,
- wind energy,
- wave power,
- geothermal energy,
- bioenergy,
- tidal power,
- and also technologies designed to improve energy efficiency.
Costs have fallen dramatically in recent years, and continue to fall. Most of these technologies are either economically competitive or close to being so. Increasingly, effective government policies support investor confidence and these markets are expanding.
Considerable progress is being made in the energy transition from fossil fuels to ecologically sustainable systems, to the point where many studies support 100% renewable energy.
Energy efficiency and renewable energy are said to be the twin pillars of sustainable energy. Some ways in which sustainable energy has been defined are:
- "Effectively, the provision of energy such that it meets the needs of the present without compromising the ability of future generations to meet their own needs. ...Sustainable Energy has two key components: renewable energy and energy efficiency." – Renewable Energy and Efficiency Partnership (British).
- "Dynamic harmony between equitable availability of energy-intensive goods and services to all people and the preservation of the earth for future generations." And, "The solution will lie in finding sustainable energy sources and more efficient means of converting and utilizing energy." – Sustainable Energy by J. W. Tester, et al., from MIT Press.
- "Any energy generation, efficiency and conservation source where: Resources are available to enable massive scaling to become a significant portion of energy generation, long term, preferably 100 years.." – Invest, a green technology non-profit organization.
- "Energy which is replenishable within a human lifetime and causes no long-term damage to the environment." – Jamaica Sustainable Development Network
This sets sustainable energy apart from other renewable energy terminology such as alternative energy by focusing on the ability of an energy source to continue providing energy. Sustainable energy can produce some pollution of the environment, as long as it is not sufficient to prohibit heavy use of the source for an indefinite amount of time.
Sustainable energy is also distinct from low-carbon energy, which is sustainable only in the sense that it does not add to the CO2 in the atmosphere.
Green Energy is energy that can be extracted, generated, and/or consumed without any significant negative impact to the environment. The planet has a natural capability to recover which means pollution that does not go beyond that capability can still be termed green.
Green power is a subset of renewable energy and represents those renewable energy resources and technologies that provide the highest environmental benefit.
The U.S. Environmental Protection Agency defines green power as electricity produced from solar, wind, geothermal, biogas, biomass and low-impact small hydroelectric sources. Customers often buy green power for avoided environmental impacts and its greenhouse gas reduction benefits.
Renewable Energy Technologies:
Main articles: Renewable energy and Renewable energy commercialization
Renewable energy technologies are essential contributors to sustainable energy as they generally contribute to world energy security, reducing dependence on fossil fuel resources, and providing opportunities for mitigating greenhouse gases.
The International Energy Agency (IEA) states that:
Conceptually, one can define three generations of renewables technologies, reaching back more than 100 years :
- First-generation technologies emerged from the industrial revolution at the end of the 19th century and include hydropower, biomass combustion and geothermal power and heat. Some of these technologies are still in widespread use.
- Second-generation technologies include solar heating and cooling, wind power, modern forms of bioenergy and solar photovoltaics. These are now entering markets as a result of research, development and demonstration (RD&D) investments since the 1980s. The initial investment was prompted by energy security concerns linked to the oil crises (1973 and 1979) of the 1970s but the continuing appeal of these renewables is due, at least in part, to environmental benefits. Many of the technologies reflect significant advancements in materials.
- Third-generation technologies are still under development and include advanced biomass gasification, biorefinery technologies, concentrating solar thermal power, hot dry rock geothermal energy and ocean energy. Advances in nanotechnology may also play a major role (Courtesy-- International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet)
First- and second-generation technologies have entered the markets, and third-generation technologies heavily depend on long term research and development commitments, where the public sector has a role to play.
Regarding energy used by vehicles, a comprehensive 2008 cost-benefit analysis review was conducted of sustainable energy sources and usage combinations in the context of global warming and other dominating issues; it ranked wind power generation combined with battery electric vehicles (BEV) and hydrogen fuel cell vehicles (HFCVs) as the most efficient.
Wind was followed by,
- concentrated solar power (CSP),
- geothermal power,
- tidal power,
- photovoltaic,
- wave power,
- hydropower,
- coal capture and storage (CCS),
- nuclear energy,
- and biofuel energy sources.
The study states: "In sum, use of wind, CSP, geothermal, tidal, PV, wave, and hydro to provide electricity for BEVs and HFCVs and, by extension, electricity for the residential, industrial, and commercial sectors, will result in the most benefit among the options considered. The combination of these technologies should be advanced as a solution to global warming, air pollution, and energy security. Coal-CCS and nuclear offer less benefit thus represent an opportunity cost loss, and the biofuel options provide no certain benefit and the greatest negative impacts."
First-generation Technologies:
First-generation technologies are most competitive in locations with abundant resources. Their future use depends on the exploration of the available resource potential, particularly in developing countries, and on overcoming challenges related to the environment and social acceptance. (Courtesy of International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet)
Among sources of renewable energy, hydroelectric plants have the advantages of being long-lived—many existing plants have operated for more than 100 years. Also, hydroelectric plants are clean and have few emissions. Criticisms directed at large-scale hydroelectric plants include: dislocation of people living where the reservoirs are planned, and release of significant amounts of carbon dioxide during construction and flooding of the reservoir.
However, it has been found that high emissions are associated only with shallow reservoirs in warm (tropical) locales, and recent innovations in hydropower turbine technology are enabling efficient development of low-impact run-of-the-river hydroelectricity projects.
Generally speaking, hydroelectric plants produce much lower life-cycle emissions than other types of generation. Hydroelectric power, which underwent extensive development during growth of electrification in the 19th and 20th centuries, is experiencing resurgence of development in the 21st century. The areas of greatest hydroelectric growth are the booming economies of Asia. China is the development leader; however, other Asian nations are installing hydropower at a rapid pace. This growth is driven by much increased energy costs—especially for imported energy—and widespread desires for more domestically produced, clean, renewable, and economical generation.
Geothermal power plants can operate 24 hours per day, providing base-load capacity, and the world potential capacity for geothermal power generation is estimated at 85 GW over the next 30 years. However, geothermal power is accessible only in limited areas of the world, including the United States, Central America, East Africa, Iceland, Indonesia, and the Philippines.
The costs of geothermal energy have dropped substantially from the systems built in the 1970s. Geothermal heat generation can be competitive in many countries producing geothermal power, or in other regions where the resource is of a lower temperature.
Enhanced geothermal system (EGS) technology does not require natural convective hydrothermal resources, so it can be used in areas that were previously unsuitable for geothermal power, if the resource is very large. EGS is currently under research at the U.S. Department of Energy.
Biomass briquettes are increasingly being used in the developing world as an alternative to charcoal. The technique involves the conversion of almost any plant matter into compressed briquettes that typically have about 70% the calorific value of charcoal. There are relatively few examples of large-scale briquette production.
One exception is in North Kivu, in eastern Democratic Republic of Congo, where forest clearance for charcoal production is considered to be the biggest threat to mountain gorilla habitat. The staff of Virunga National Park have successfully trained and equipped over 3500 people to produce biomass briquettes, thereby replacing charcoal produced illegally inside the national park, and creating significant employment for people living in extreme poverty in conflict-affected areas.
Second-generation Technologies:
Markets for second-generation technologies are strong and growing, but only in a few countries. The challenge is to broaden the market base for continued growth worldwide. Strategic deployment in one country not only reduces technology costs for users there, but also for those in other countries, contributing to overall cost reductions and performance improvement. (Courtesy of International Energy Agency, RENEWABLES IN GLOBAL ENERGY SUPPLY, An IEA Fact Sheet)
Solar heating systems are a well known second-generation technology and generally consist of solar thermal collectors, a fluid system to move the heat from the collector to its point of usage, and a reservoir or tank for heat storage and subsequent use.
The systems may be used to heat domestic hot water, swimming pool water, or for space heating. The heat can also be used for industrial applications or as an energy input for other uses such as cooling equipment.
In many climates, a solar heating system can provide a very high percentage (50 to 75%) of domestic hot water energy. Energy received from the sun by the earth is that of electromagnetic radiation. Light ranges of visible, infrared, ultraviolet, x-rays, and radio waves received by the earth through solar energy.
The highest power of radiation comes from visible light. Solar power is complicated due to changes in seasons and from day to night. Cloud cover can also add to complications of solar energy, and not all radiation from the sun reaches earth because it is absorbed and dispersed due to clouds and gases within the earth's atmospheres.
In the 1980s and early 1990s, most photovoltaic modules provided remote-area power supply, but from around 1995, industry efforts have focused increasingly on developing building integrated photovoltaics and power plants for grid connected applications (see photovoltaic power stations article for details).
Currently the largest photovoltaic power plant in North America is the Nellis Solar Power Plant (15 MW). There is a proposal to build a Solar power station in Victoria, Australia, which would be the world's largest PV power station, at 154 MW. Other large photovoltaic power stations include the Girassol solar power plant (62 MW), and the Waldpolenz Solar Park (40 MW).
Some of the second-generation renewable energy sources, such as wind power, have high potential and have already realized relatively low production costs. At the end of 2008, worldwide wind farm capacity was 120,791 megawatts (MW), representing an increase of 28.8 percent during the year, and wind power produced some 1.3% of global electricity consumption. Wind power accounts for approximately 20% of electricity use in Denmark, 9% in Spain, and 7% in Germany. However, it may be difficult to site wind turbines in some areas for aesthetic or environmental reasons, and it may be difficult to integrate wind power into electricity grids in some cases.
Solar thermal power stations have been successfully operating in California commercially since the late 1980s, including the largest solar power plant of any kind, the 350 MW Solar Energy Generating Systems. Nevada Solar One is another 64MW plant which has recently opened. Other parabolic trough power plants being proposed are two 50MW plants in Spain, and a 100MW plant in Israel.
Brazil has one of the largest renewable energy programs in the world, involving production of ethanol fuel from sugar cane, and ethanol now provides 18 percent of the country's automotive fuel. As a result of this, together with the exploitation of domestic deep water oil sources, Brazil, which years ago had to import a large share of the petroleum needed for domestic consumption, recently reached complete self-sufficiency in oil.
Most cars on the road today in the U.S. can run on blends of up to 10% ethanol, and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. Ford, DaimlerChrysler, and GM are among the automobile companies that sell "flexible-fuel" cars, trucks, and minivans that can use gasoline and ethanol blends ranging from pure gasoline up to 85% ethanol (E85). By mid-2006, there were approximately six million E85-compatible vehicles on U.S. roads.
Third-generation Technologies:
Third-generation technologies are not yet widely demonstrated or commercialised. They are on the horizon and may have potential comparable to other renewable energy technologies, but still depend on attracting sufficient attention and RD&D funding. These newest technologies include,
- advanced biomass gasification,
- biorefinery technologies,
- solar thermal power stations,
- hot dry rock geothermal energy,
- and ocean energy.
Bio-fuels may be defined as "renewable," yet may not be "sustainable," due to soil degradation. As of 2012, 40% of American corn production goes toward ethanol. Ethanol takes up a large percentage of "Clean Energy Use" when in fact, it is still debatable whether ethanol should be considered as a "Clean Energy."
According to the International Energy Agency, new bioenergy (biofuel) technologies being developed today, notably cellulose ethanol bio-refineries, could allow biofuels to play a much bigger role in the future than previously thought. Cellulosic ethanol can be made from plant matter composed primarily of inedible cellulose fibers that form the stems and branches of most plants. Crop residues (such as corn stalks, wheat straw and rice straw), wood waste and municipal solid waste are potential sources of cellulose biomass. Dedicated energy crops, such as switchgrass, are also promising cellulose sources that can be sustainably produced in many regions of the United States.
Ocean Energy:
In terms of ocean energy, another third-generation technology, Portugal has the world's first commercial wave farm, the Aguçadora Wave Park, under construction in 2007. The farm will initially use three Pelamis P-750 machines generating 2.25 MW, and costs are put at 8.5 million euro.
Subject to successful operation, a further 70 million euro is likely to be invested before 2009 on a further 28 machines to generate 525 MW. Funding for a wave farm in Scotland was announced in February, 2007 by the Scottish Executive, at a cost of over 4 million pounds, as part of a £13 million funding packages for ocean power in Scotland. The farm will be the world's largest with a capacity of 3 MW generated by four Pelamis machines. (see also Wave farm).
Tidal Power:
In 2007, the world's first turbine to create commercial amounts of energy using tidal power was installed in the narrows of Strangford Lough in Ireland. The 1.2 MW underwater tidal electricity generator takes advantage of the fast tidal flow in the lough which can be up to 4m/s.
Although the generator is powerful enough to power up to a thousand homes, the turbine has a minimal environmental impact, as it is almost entirely submerged, and the rotors turn slowly enough that they pose no danger to wildlife.
Solar Power Panels:
Solar power panels that use nanotechnology, which can create circuits out of individual silicon molecules, may cost half as much as traditional photovoltaic cells, according to executives and investors involved in developing the products.
Nanosolar has secured more than $100 million from investors to build a factory for nanotechnology thin-film solar panels. The company's plant has a planned production capacity of 430 megawatts peak power of solar cells per year. Commercial production started and first panels have been shipped to customers in late 2007.
Artificial Photosynthesis:
Large national and regional research projects on artificial photosynthesis are designing nanotechnology-based systems that use solar energy to split water into hydrogen fuel. A proposal has been made for a Global Artificial Photosynthesis project In 2011, researchers at the Massachusetts Institute of Technology (MIT) developed what they are calling an "Artificial Leaf", which is capable of splitting water into hydrogen and oxygen directly from solar power when dropped into a glass of water. One side of the "Artificial Leaf" produces bubbles of hydrogen, while the other side produces bubbles of oxygen.
Most current solar power plants are made from an array of similar units where each unit is continuously adjusted, e.g., with some step motors, so that the light converter stays in focus of the sun light. The cost of focusing light on converters such as high-power solar panels, Stirling engine, etc. can be dramatically decreased with a simple and efficient rope mechanics. In this technique many units are connected with a network of ropes so that pulling two or three ropes is sufficient to keep all light converters simultaneously in focus as the direction of the sun changes.
Japan and China have national programs aimed at commercial scale Space-Based Solar Power (SBSP). The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.
A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge.
Enabling technologies for renewable energy:
Heat pumps and Thermal energy storage are classes of technologies that can enable the utilization of renewable energy sources that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed.
While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).
Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice). Short-term thermal storages can be used for peak-shaving in district heating or electrical distribution systems.
Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms). The Drake Landing Solar Community (Alberta, Canada) is illustrative. Borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.
Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top. Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump.
Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).
Energy efficiency:
Moving towards energy sustainability will require changes not only in the way energy is supplied, but in the way it is used, and reducing the amount of energy required to deliver various goods or services is essential. Opportunities for improvement on the demand side of the energy equation are as rich and diverse as those on the supply side, and often offer significant economic benefits.
Renewable energy and energy efficiency are sometimes said to be the "twin pillars" of sustainable energy policy. Both resources must be developed in order to stabilize and reduce carbon dioxide emissions. Efficiency slows down energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too fast, renewable energy development will chase a receding target.
A recent historical analysis has demonstrated that the rate of energy efficiency improvements has generally been outpaced by the rate of growth in energy demand, which is due to continuing economic and population growth. As a result, despite energy efficiency gains, total energy use and related carbon emissions have continued to increase.
Thus, given the thermodynamic and practical limits of energy efficiency improvements, slowing the growth in energy demand is essential. However, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total emissions; reducing the carbon content of energy sources is also needed. Any serious vision of a sustainable energy economy thus requires commitments to both renewable and efficiency.
Renewable energy (and energy efficiency) are no longer niche sectors that are promoted only by governments and environmentalists. The increased levels of investment and the fact that much of the capital is coming from more conventional financial actors suggest that sustainable energy options are now becoming mainstream.
An example of this would be The Alliance to Save Energy's Project with Stahl Consolidated Manufacturing, (Huntsville, Alabama, USA) (StahlCon 7), a patented generator shaft designed to reduce emissions within existing power generating systems, granted publishing rights to the Alliance in 2007.
Climate change concerns coupled with high oil prices and increasing government support are driving increasing rates of investment in the sustainable energy industries, according to a trend analysis from the United Nations Environment Program. According to UNEP, global investment in sustainable energy in 2007 was higher than previous levels, with $148 billion of new money raised in 2007, an increase of 60% over 2006. Total financial transactions in sustainable energy, including acquisition activity, was $204 billion.
Investment flows in 2007 broadened and diversified, making the overall picture one of greater breadth and depth of sustainable energy use. The mainstream capital markets are "now fully receptive to sustainable energy companies, supported by a surge in funds destined for clean energy investment".
Smart-grid technology:
Main article: Smart grid
Smart grid refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation. These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries.
They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers of electricity in homes and businesses. They offer many benefits to utilities and consumers—mostly seen in big improvements in energy efficiency on the electricity grid and in the energy users’ homes and offices.
Green energy and green power:
Green energy includes natural energetic processes that can be harnessed with little pollution. Green power is electricity generated from renewable energy sources like,
- Anaerobic digestion,
- geothermal power,
- wind power,
- small-scale hydropower,
- solar energy,
- biomass power,
- tidal power,
- wave power,
- and some forms of nuclear power (ones which are able to "burn" nuclear waste through a process known as nuclear transmutation, such as an Integral Fast Reactor, and therefore belong in the "Green Energy" category). Some definitions may also include power derived from the incineration of waste.
Some people, including Greenpeace founder and first member Patrick Moore, George Monbiot, Bill Gates and James Lovelock have specifically classified nuclear power as green energy.
Others, including Greenpeace's Phil Radford disagree, claiming that the problems associated with radioactive waste and the risk of nuclear accidents (such as the Chernobyl disaster) pose an unacceptable risk to the environment and to humanity.
However, newer nuclear reactor designs are capable of utilizing what is now deemed "nuclear waste" until it is no longer (or dramatically less) dangerous, and have design features that greatly minimize the possibility of a nuclear accident. These designs have yet to be proven. (See: Integral Fast Reactor)
Some have argued that although green energy is a commendable effort in solving the world's increasing energy consumption, it must be accompanied by a cultural change that encourages the decrease of the world's appetite for energy.
In several countries with common carrier arrangements, electricity retailing arrangements make it possible for consumers to purchase green electricity (renewable electricity) from either their utility or a green power provider.
When energy is purchased from the electricity network, the power reaching the consumer will not necessarily be generated from green energy sources. The local utility company, electric company, or state power pool buys their electricity from electricity producers who may be generating from fossil fuel, nuclear or renewable energy sources.
In many countries green energy currently provides a very small amount of electricity, generally contributing less than 2 to 5% to the overall pool. In some U.S. states, local governments have formed regional power purchasing pools using Community Choice Aggregation and Solar Bonds to achieve a 51% renewable mix or higher, such as in the City of San Francisco.
By participating in a green energy program a consumer may be having an effect on the energy sources used and ultimately might be helping to promote and expand the use of green energy. They are also making a statement to policy makers that they are willing to pay a price premium to support renewable energy.
Green energy consumers either obligate the utility companies to increase the amount of green energy that they purchase from the pool (so decreasing the amount of non-green energy they purchase), or directly fund the green energy through a green power provider.
If insufficient green energy sources are available, the utility must develop new ones or contract with a third party energy supplier to provide green energy, causing more to be built. However, there is no way the consumer can check whether or not the electricity bought is "green" or otherwise.
In some countries such as the Netherlands, electricity companies guarantee to buy an equal amount of 'green power' as is being used by their green power customers. The Dutch government exempts green power from pollution taxes, which means green power is hardly any more expensive than other power.
In the United States, one of the main problems with purchasing green energy through the electrical grid is the current centralized infrastructure that supplies the consumer’s electricity. This infrastructure has led to increasingly frequent brown outs and black outs, high CO2 emissions, higher energy costs, and power quality issues. An additional $450 billion will need to be invested to expand this fledgling system over the next 20 years to meet increasing demand.
In addition, this centralized system is now being further overtaxed with the incorporation of renewable energies such as wind, solar, and geothermal energies. Renewable resources, due to the amount of space they require, are often located in remote areas where there is a lower energy demand. The current infrastructure would make transporting this energy to high demand areas, such as urban centers, highly inefficient and in some cases impossible.
In addition, despite the amount of renewable energy produced or the economic viability of such technologies only about 20 percent will be able to be incorporated into the grid. To have a more sustainable energy profile, the United States must move towards implementing changes to the electrical grid that will accommodate a mixed-fuel economy.
However, several initiatives are being proposed to mitigate these distribution problems. First and foremost, the most effective way to reduce USA’s CO2 emissions and slow global warming is through conservation efforts.
Opponents of the current US electrical grid have also advocated for decentralizing the grid. This system would increase efficiency by reducing the amount of energy lost in transmission. It would also be economically viable as it would reduce the amount of power lines that will need to be constructed in the future to keep up with demand. Merging heat and power in this system would create added benefits and help to increase its efficiency by up to 80-90%. This is a significant increase from the current fossil fuel plants which only have an efficiency of 34%.
A more recent concept for improving our electrical grid is to beam microwaves from Earth-orbiting satellites or the moon to directly when and where there is demand. The power would be generated from solar energy captured on the lunar surface In this system, the receivers would be "broad, translucent tent-like structures that would receive microwaves and convert them to electricity".
NASA said in 2000 that the technology was worth pursuing but it is still too soon to say if the technology will be cost-effective.
Local Green Energy Systems:
Main article: Microgeneration
Those not satisfied with the third-party grid approach to green energy via the power grid can install their own locally based renewable energy system. Renewable energy electrical systems from solar to wind to even local hydro-power in some cases, are some of the many types of renewable energy systems available locally.
Additionally, for those interested in heating and cooling their dwelling via renewable energy, geothermal heat pump systems that tap the constant temperature of the earth, which is around 7 to 15 degrees Celsius a few feet underground and increases dramatically at greater depths, are an option over conventional natural gas and petroleum-fueled heat approaches.
Also, in geographic locations where the Earth's Crust is especially thin, or near volcanoes (as is the case in Iceland) there exists the potential to generate even more electricity than would be possible at other sites, thanks to a more significant temperature gradient at these locales.
The advantage of this approach in the United States is that many states offer incentives to offset the cost of installation of a renewable energy system. In California, Massachusetts and several other U.S. states, a new approach to community energy supply called Community Choice Aggregation has provided communities with the means to solicit a competitive electricity supplier and use municipal revenue bonds to finance development of local green energy resources.
Individuals are usually assured that the electricity they are using is actually produced from a green energy source that they control. Once the system is paid for, the owner of a renewable energy system will be producing their own renewable electricity for essentially no cost and can sell the excess to the local utility at a profit.
Using green energy:
Main articles: Energy storage, Grid energy storage, and Bio-energy with carbon capture and storage.
Renewable energy, after its generation, needs to be stored in a medium for use with autonomous devices as well as vehicles. Also, to provide household electricity in remote areas (that is areas which are not connected to the mains electricity grid), energy storage is required for use with renewable energy. Energy generation and consumption systems used in the latter case are usually stand-alone power systems.
Some examples are:
- energy carriers as hydrogen, liquid nitrogen, compressed air, oxyhydrogen, batteries, to power vehicles.
- flywheel energy storage, pumped-storage hydroelectricity is more usable in stationary applications (e.g. to power homes and offices). In household power systems, conversion of energy can also be done to reduce smell. For example, organic matter such as cow dung and spoilable organic matter can be converted to biochar. To eliminate emissions, carbon capture and storage is then used.
Usually however, renewable energy is derived from the mains electricity grid. This means that energy storage is mostly not used, as the mains electricity grid is organized to produce the exact amount of energy being consumed at that particular moment.
Energy production on the mains electricity grid is always set up as a combination of (large-scale) renewable energy plants, as well as other power plants as fossil-fuel power plants and nuclear power. This combination however, which is essential for this type of energy supply (as e.g. wind turbines, solar power plants etc.) can only produce when the wind blows and the sun shines.
This is also one of the main drawbacks of the system as fossil fuel power plants are polluting and are a main cause of global warming (nuclear power being an exception). Although fossil fuel power plants too can be made emissionless (through carbon capture and storage), as well as renewable (if the plants are converted to e.g. biomass) the best solution is still to phase out the latter power plants over time.
Nuclear power plants too can be more or less eliminated from their problem of nuclear waste through the use of nuclear reprocessing and newer plants as fast breeder and nuclear fusion plants.
Renewable energy power plants do provide a steady flow of energy. For example, hydropower plants, ocean thermal plants, osmotic power plants all provide power at a regulated pace, and are thus available power sources at any given moment (even at night, windstill moments etc.).
At present however, the number of steady-flow renewable energy plants alone is still too small to meet energy demands at the times of the day when the irregular producing renewable energy plants cannot produce power.
Besides the greening of fossil fuel and nuclear power plants, another option is the distribution and immediate use of power from solely renewable sources. In this set-up energy storage is again not necessary. For example, TREC has proposed to distribute solar power from the Sahara to Europe.
Europe can distribute wind and ocean power to the Sahara and other countries. In this way, power is produced at any given time as at any point of the planet as the sun or the wind is up or ocean waves and currents are stirring. This option however is probably not possible in the short-term, as fossil fuel and nuclear power are still the main sources of energy on the mains electricity net and replacing them will not be possible overnight.
Several large-scale energy storage suggestions for the grid have been done. Worldwide there is over 100 GW of Pumped-storage hydroelectricity. This improves efficiency and decreases energy losses but a conversion to an energy storing mains electricity grid is a very costly solution.
Some costs could potentially be reduced by making use of energy storage equipment the consumer buys and not the state. An example is batteries in electric cars that would double as an energy buffer for the electricity grid. However besides the cost, setting-up such a system would still be a very complicated and difficult procedure. Also, energy storage apparatus' as car batteries are also built with materials that pose a threat to the environment (e.g. Lithium).
The combined production of batteries for such a large part of the population would still have environmental concerns. Besides car batteries however, other Grid energy storage projects make use of less polluting energy carriers (e.g. compressed air tanks and flywheel energy storage).
Carbon-neutral and negative fuels:
Main article: Carbon neutral fuel
A carbon-neutral fuel is a synthetic fuel – such as methane, gasoline, diesel fuel or jet fuel – produced from renewable or nuclear energy used to hydrogenate waste carbon dioxide recycled from power plant flue-gas emissions, recovered from automotive exhaust gas, or derived from carbonic acid in seawater. Such fuels are carbon-neutral because they do not result in a net increase in atmospheric greenhouse gases.
To the extent that carbon-neutral fuels displace fossil fuels, or if they are produced from waste carbon or seawater carbonic acid, and their combustion is subject to carbon capture at the flue or exhaust pipe, they result in negative carbon dioxide emission and net carbon dioxide removal from the atmosphere, and thus constitute a form of greenhouse gas remediation.
Such fuels are produced by the electrolysis of water to make hydrogen used in turn in the Sabatier reaction to produce methane which may then be stored to be burned later in power plants as synthetic natural gas, transported by pipeline, truck, or tanker ship, or be used in gas to liquids processes such as the Fischer–Tropsch process to make traditional transportation or heating fuels.
Green energy and labeling in The United States:
The United States Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Center for Resource Solutions (CRS) recognizes the voluntary purchase of electricity from renewable energy sources (also called renewable electricity or green electricity) as green power.
The most popular way to purchase renewable energy as revealed by NREL data is through purchasing Renewable Energy Certificates (RECs). According to a Natural Marketing Institute (NMI) survey 55 percent of American consumers want companies to increase their use of renewable energy.
DOE selected six companies for its 2007 Green Power Supplier Awards, including:
- Constellation NewEnergy;
- 3Degrees;
- Sterling Planet;
- SunEdison;
- Pacific Power and Rocky Mountain Power;
- and Silicon Valley Power.
The combined green power provided by those six winners equals more than 5 billion kilowatt-hours per year, which is enough to power nearly 465,000 average U.S. households. In 2014, Arcadia Power made RECS available to homes and businesses in all 50 states, allowing consumers to use "100% green power" as defined by the EPA's Green Power Partnership.
The U.S. Environmental Protection Agency (USEPA) Green Power Partnership is a voluntary program that supports the organizational procurement of renewable electricity by offering expert advice, technical support, tools and resources. This can help organizations lower the transaction costs of buying renewable power, reduce carbon footprint, and communicate its leadership to key stakeholders.
Throughout the country, more than half of all U.S. electricity customers now have an option to purchase some type of green power product from a retail electricity provider. Roughly one-quarter of the nation's utilities offer green power programs to customers, and voluntary retail sales of renewable energy in the United States totaled more than 12 billion kilowatt-hours in 2006, a 40% increase over the previous year.
Sustainable energy research:
There are numerous organizations within the academic, federal, and commercial sectors conducting large scale advanced research in the field of sustainable energy. This research spans several areas of focus across the sustainable energy spectrum. Most of the research is targeted at improving efficiency and increasing overall energy yields.
Multiple federally supported research organizations have focused on sustainable energy in recent years. Two of the most prominent of these labs are Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), both of which are funded by the United States Department of Energy and supported by various corporate partners. Sandia has a total budget of $2.4 billion while NREL has a budget of $375 million.
Scientific production towards sustainable energy systems is rising exponentially, growing from about 500 English journal papers only about renewable energy in 1992 to almost 9,000 papers in 2011.
Solar:
Main articles: Solar power and Artificial photosynthesis
The primary obstacle that is preventing the large scale implementation of solar powered energy generation is the inefficiency of current solar technology. Currently, photovoltaic (PV) panels only have the ability to convert around 16% of the sunlight that hits them into electricity.
At this rate, many experts believe that solar energy is not efficient enough to be economically sustainable given the cost to produce the panels themselves. Both Sandia National Laboratories and the National Renewable Energy Laboratory (NREL), have heavily funded solar research programs.
The NREL solar program has a budget of around $75 million and develops research projects in the areas of photovoltaic (PV) technology, solar thermal energy, and solar radiation. The budget for Sandia’s solar division is unknown, however it accounts for a significant percentage of the laboratory’s $2.4 billion budget.
Several academic programs have focused on solar research in recent years. The Solar Energy Research Center (SERC) at University of North Carolina (UNC) has the sole purpose of developing cost effective solar technology. In 2008, researchers at Massachusetts Institute of Technology (MIT) developed a method to store solar energy by using it to produce hydrogen fuel from water.
Such research is targeted at addressing the obstacle that solar development faces of storing energy for use during nighttime hours when the sun is not shining. In February 2012, North Carolina-based Semprius Inc., a solar development company backed by German corporation Siemens, announced that they had developed the world’s most efficient solar panel. The company claims that the prototype converts 33.9% of the sunlight that hits it to electricity, more than double the previous high-end conversion rate. Major projects on artificial photosynthesis or solar fuels are also under way in many developed nations.
Space-Based Solar Power:
Space-Based Solar Power Satellites seek to overcome the problems of storage and provide civilization-scale power that is clean, constant, and global. Japan and China have active national programs aimed at commercial scale Space-Based Solar Power (SBSP), and both nation's hope to orbit demonstrations in the 2030s.
The China Academy of Space Technology (CAST) won the 2015 International SunSat Design Competition with this video of their Multi-Rotary Joint design. Proponents of SBSP claim that Space-Based Solar Power would be clean, constant, and global, and could scale to meet all planetary energy demand.
A recent multi-agency industry proposal (echoing the 2008 Pentagon recommendation) won the SECDEF/SECSTATE/USAID Director D3 (Diplomacy, Development, Defense) Innovation Challenge with the following pitch and vision video. Northrop Grumman is funding CALTECH with $17.5 million for an ultra lightweight design. Keith Henson recently posted a video of a "bootstrapping" approach.
Wind:
Main articles: Wind power and Wind farm
Wind energy research dates back several decades to the 1970s when NASA developed an analytical model to predict wind turbine power generation during high winds. Today, both Sandia National Laboratories and National Renewable Energy Laboratory have programs dedicated to wind research.
Sandia’s laboratory focuses on the advancement of materials, aerodynamics, and sensors. The NREL wind projects are centered on improving wind plant power production, reducing their capital costs, and making wind energy more cost effective overall.
The Field Laboratory for Optimized Wind Energy (FLOWE) at Caltech was established to research renewable approaches to wind energy farming technology practices that have the potential to reduce the cost, size, and environmental impact of wind energy production.
The president of Sky WindPower Corporation thinks that wind turbines will be able to produce electricity at a cent/kWh at an average which in comparison to coal-generated electricity is a fractional of the cost.
A wind farm is a group of wind turbines in the same location used to produce electric power. A large wind farm may consist of several hundred individual wind turbines, and cover an extended area of hundreds of square miles, but the land between the turbines may be used for agricultural or other purposes. A wind farm may also be located offshore.
Many of the largest operational onshore wind farms are located in the USA and China. The Gansu Wind Farm in China has over 5,000 MW installed with a goal of 20,000 MW by 2020. China has several other "wind power bases" of similar size.
The Alta Wind Energy Center in California is the largest onshore wind farm outside of China, with a capacity of 1020 MW of power. Europe leads in the use of wind power with almost 66 GW, about 66 percent of the total globally, with Denmark in the lead according to the countries installed per-capita capacity.
As of February 2012, the Walney Wind Farm in United Kingdom is the largest offshore wind farm in the world at 367 MW, followed by Thanet Wind Farm (300 MW), also in the UK.
There are many large wind farms under construction and these include,
- BARD Offshore 1 (400 MW),
- Clyde Wind Farm (350 MW),
- Greater Gabbard wind farm (500 MW),
- Lincs Wind Farm (270 MW),
- London Array (1000 MW),
- Lower Snake River Wind Project (343 MW),
- Macarthur Wind Farm (420 MW),
- Shepherds Flat Wind Farm (845 MW),
- and Sheringham Shoal (317 MW).
Wind power has expanded quickly, it's share of worldwide electricity usage at the end of 2014 was 3.1%.
Carbon-neutral and Negative Fuels:
Main articles: Carbon-neutral fuel and Methanol economy
Carbon-neutral fuels are synthetic fuels (including methane, gasoline, diesel fuel, jet fuel or ammonia) produced by hydrogenating waste carbon dioxide recycled from power plant flue-gas emissions, recovered from automotive exhaust gas, or derived from carbonic acid in seawater.
Commercial fuel synthesis companies suggest they can produce synthetic fuels for less than petroleum fuels when oil costs more than $55 per barrel. Renewable methanol (RM) is a fuel produced from hydrogen and carbon dioxide by catalytic hydrogenation where the hydrogen has been obtained from water electrolysis. It can be blended into transportation fuel or processed as a chemical feedstock.
The George Olah carbon dioxide recycling plant operated by Carbon Recycling International in Grindavík, Iceland has been producing 2 million liters of methanol transportation fuel per year from flue exhaust of the Svartsengi Power Station since 2011. It has the capacity to produce 5 million liters per year.
A 250 kilowatt methane synthesis plant was constructed by the Center for Solar Energy and Hydrogen Research (ZSW) at Baden-Württemberg and the Fraunhofer Society in Germany and began operating in 2010. It is being upgraded to 10 megawatts, scheduled for completion in autumn, 2012.
Audi has constructed a carbon-neutral liquefied natural gas (LNG) plant in Werlte, Germany. The plant is intended to produce transportation fuel to offset LNG used in their A3 Sportback g-tron automobiles, and can keep 2,800 metric tons of CO2 out of the environment per year at its initial capacity.
Other commercial developments are taking place in Columbia, South Carolina, Camarillo, California, and Darlington, England.
Such fuels are considered carbon-neutral because they do not result in a net increase in atmospheric greenhouse gases. To the extent that synthetic fuels displace fossil fuels, or if they are produced from waste carbon or seawater carbonic acid, and their combustion is subject to carbon capture at the flue or exhaust pipe, they result in negative carbon dioxide emission and net carbon dioxide removal from the atmosphere, and thus constitute a form of greenhouse gas remediation.
Such renewable fuels alleviate the costs and dependency issues of imported fossil fuels without requiring either electrification of the vehicle fleet or conversion to hydrogen or other fuels, enabling continued compatible and affordable vehicles.
Carbon-neutral fuels offer relatively low cost energy storage, alleviating the problems of wind and solar intermittency, and they enable distribution of wind, water, and solar power through existing natural gas pipelines.
Nighttime wind power is considered the most economical form of electrical power with which to synthesize fuel, because the load curve for electricity peaks sharply during the warmest hours of the day, but wind tends to blow slightly more at night than during the day, so, the price of nighttime wind power is often much less expensive than any alternative. Germany has built a 250 kilowatt synthetic methane plant which they are scaling up to 10 megawatts.
Biomass:
Main articles: Biomass and Biogas
Biomass is biological material derived from living, or recently living organisms. It most often refers to plants or plant-derived materials which are specifically called lignocellulosic biomass. As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel.
Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical methods. Wood remains the largest biomass energy source today; examples include forest residues – such as dead trees, branches and tree stumps –, yard clippings, wood chips and even municipal solid waste.
In the second sense, biomass includes plant or animal matter that can be converted into fibers or other industrial chemicals, including biofuels. Industrial biomass can be grown from numerous types of plants, including:
- miscanthus,
- switchgrass,
- hemp,
- corn,
- poplar,
- willow,
- sorghum,
- sugarcane,
- bamboo,
- and a variety of tree species, ranging from eucalyptus to oil palm (palm oil).
Biomass, biogas and biofuels are burned to produce heat/power and in doing so harm the environment. Pollutants such as sulphurous oxides (SOx), nitrous oxides (NOx), and particulate matter (PM) are produced from this combustion; the World Health Organisation estimates that 7 million premature deaths are caused each year by air pollution. Biomass combustion is a major contributor.
Ethanol Biofuels:
Main article: Ethanol fuel
As the primary source of biofuel in North America, many organizations are conducting research in the area of ethanol production. On the Federal level, the USDA conducts a large amount of research regarding ethanol production in the United States. Much of this research is targeted towards the effect of ethanol production on domestic food markets.
The National Renewable Energy Laboratory has conducted various ethanol research projects, mainly in the area of cellulosic ethanol. Cellulosic ethanol has many benefits over traditional corn based-ethanol. It does not take away or directly conflict with the food supply because it is produced from wood, grasses, or non-edible parts of plants. Moreover, some studies have shown cellulosic ethanol to be more cost effective and economically sustainable than corn-based ethanol.
Even if we used all the corn crop that we have in the United States and converted it into ethanol it would only produce enough fuel to serve 13 percent of the United States total gasoline consumption.
Sandia National Laboratories conducts in-house cellulosic ethanol research and is also a member of the Joint BioEnergy Institute (JBEI), a research institute founded by the United States Department of Energy with the goal of developing cellulosic biofuels.
Other Biofuels:
From 1978 to 1996, the National Renewable Energy Laboratory experimented with producing algae fuel in the "Aquatic Species Program." A self-published article by Michael Briggs, at the University of New Hampshire Biofuels Group, offers estimates for the realistic replacement of all motor vehicle fuel with biofuels by utilizing algae that have a natural oil content greater than 50%, which Briggs suggests can be grown on algae ponds at wastewater treatment plants. This oil-rich algae can then be extracted from the system and processed into biofuels, with the dried remainder further reprocessed to create ethanol.
The production of algae to harvest oil for biofuels has not yet been undertaken on a commercial scale, but feasibility studies have been conducted to arrive at the above yield estimate.
During the biofuel production process algae actually consumes the carbon dioxide in the air and turns it into oxygen through photosynthesis. In addition to its projected high yield, algaculture— unlike food crop-based biofuels — does not entail a decrease in food production, since it requires neither farmland nor fresh water. Many companies are pursuing algae bio-reactors for various purposes, including scaling up biofuels production to commercial levels.
Several groups in various sectors are conducting research on Jatropha curcas, a poisonous shrub-like tree that produces seeds considered by many to be a viable source of biofuels feedstock oil.
Much of this research focuses on improving the overall per acre oil yield of Jatropha through advancements in genetics, soil science, and horticultural practices. SG Biofuels, a San Diego-based Jatropha developer, has used molecular breeding and biotechnology to produce elite hybrid seeds of Jatropha that show significant yield improvements over first generation varieties.
The Center for Sustainable Energy Farming (CfSEF) is a Los Angeles-based non-profit research organization dedicated to Jatropha research in the areas of plant science, agronomy, and horticulture. Successful exploration of these disciplines is projected to increase Jatropha farm production yields by 200-300% in the next ten years.
Geothermal:
Main article: Geothermal electricity
Geothermal energy is produced by tapping into the thermal energy created and stored within the earth. It arises from the radioactive decay of an isotope of potassium and other elements found in the Earth's crust. Geothermal energy can be obtained by drilling into the ground, very similar to oil exploration, and then it is carried by a heat-transfer fluid (e.g. water, brine or steam).
Geothermal systems that are mainly dominated by water have the potential to provide greater benefits to the system and will generate more power. Within these liquid-dominated systems, there are possible concerns of subsidence and contamination of ground-water resources.
Therefore, protection of ground-water resources is necessary in these systems. This means that careful reservoir production and engineering is necessary in liquid-dominated geothermal reservoir systems.
Geothermal energy is considered sustainable because that thermal energy is constantly replenished. However, the science of geothermal energy generation is still young and developing economic viability. Several entities, such as the National Renewable Energy Laboratory and Sandia National Laboratories are conducting research toward the goal of establishing a proven science around geothermal energy. The International Centre for Geothermal Research (IGC), a German geosciences research organization, is largely focused on geothermal energy development research.
Hydrogen:
Main article: Hydrogen fuel
Over $1 billion of federal money has been spent on the research and development of hydrogen and a medium for energy storage in the United States.
Both the National Renewable Energy Laboratory and Sandia National Laboratories have departments dedicated to hydrogen research. Hydrogen is useful for energy storage and for use in airplanes, but is not practical for automobile use, as it is not very efficient, compared to using a battery — for the same cost a person can travel three times as far using a battery.
Thorium:
Main article: Thorium fuel cycle
There are potentially two sources of nuclear power:
- Fission is used in all current nuclear power plants.
- Fusion is the reaction that exists in stars, including the sun, and remains impractical for use on Earth, as fusion reactors are not yet available.
However nuclear power is controversial politically and scientifically due to concerns about radioactive waste disposal, safety, the risks of a severe accident, and technical and economical problems in dismantling of old power plants.
Thorium is a fissionable material used in thorium-based nuclear power. The thorium fuel cycle claims several potential advantages over a uranium fuel cycle, including greater abundance, superior physical and nuclear properties, better resistance to nuclear weapons proliferation and reduced plutonium and actinide production. Therefore, it is sometimes referred as sustainable.
Clean energy investments:
2010 was a record year for green energy investments. According to a report from Bloomberg New Energy Finance, nearly US $243 billion was invested in wind farms, solar power, electric cars, and other alternative technologies worldwide, representing a 30 percent increase from 2009 and nearly five times the money invested in 2004.
China had $51.1 billion investment in clean energy projects in 2010, by far the largest figure for any country.
Within emerging economies, Brazil comes second to China in terms of clean energy investments. Supported by strong energy policies, Brazil has one of the world’s highest biomass and small-hydro power capacities and is poised for significant growth in wind energy investment. The cumulative investment potential in Brazil from 2010 to 2020 is projected as $67 billion.
India is another rising clean energy leader. While India ranked the 10th in private clean energy investments among G-20 members in 2009, over the next 10 years it is expected to rise to the third position, with annual clean energy investment under current policies forecast to grow by 369 percent between 2010 and 2020.
It is clear that the center of growth has started to shift to the developing economies and they may lead the world in the new wave of clean energy investments.
Around the world many sub-national governments - regions, states and provinces - have aggressively pursued sustainable energy investments. In the United States, California's leadership in renewable energy was recognized by The Climate Group when it awarded former Governor Arnold Schwarzenegger its inaugural award for international climate leadership in Copenhagen in 2009.
In Australia, the state of South Australia - under the leadership of former Premier Mike Rann - has led the way with wind power comprising 26% of its electricity generation by the end of 2011, edging out coal fired generation for the first time. South Australia also has had the highest take-up per capita of household solar panels in Australia following the Rann Government's introduction of solar feed-in laws and educative campaign involving the installation of solar photovoltaic installations on the roofs of prominent public buildings, including the parliament, museum, airport and Adelaide Showgrounds pavilion and schools.
Rann, Australia's first climate change minister, passed legislation in 2006 setting targets for renewable energy and emissions cuts, the first legislation in Australia to do so.
Also, in the European Union there is a clear trend of promoting policies encouraging investments and financing for sustainable energy in terms of energy efficiency, innovation in energy exploitation and development of renewable resources, with increased consideration of environmental aspects and sustainability.
Related Journals:
Among scientific journals related to the interdisciplinary study of sustainable energy are:
- Energy and Environmental Science
- Energy for Sustainable Development
- Energy Policy
- Journal of Renewable and Sustainable Energy
- Renewable and Sustainable Energy Reviews
See Also:
- Ashden Awards for sustainable energy
- Electric vehicle
- Environmental impact of the energy industry
- Energy Globe Award
- Energy hierarchy
- Energy park
- Hydrogen economy
- International Network for Sustainable Energy - INFORSE
- International Renewable Energy Agency
- Leadership in Energy and Environmental Design (LEED)
- List of energy storage projects
- Renewable Energy and Energy Efficiency Partnership- REEEP
- U.S. Department of Energy Solar Decathlon
- Sustainable Energy for All initiative
- The Venus Project
Energy Recycling combined with Energy Recovery
YouTube Video: Plastics-to-Fuel: Creating Energy from Non-Recycled Plastics
Pictured: Myth: Recycling Uses More Energy than it Saves
Energy recycling is the energy recovery process (see next topic below) of utilizing energy that would normally be wasted, usually by converting it into electricity or thermal energy.
Undertaken at manufacturing facilities, power plants, and large institutions such as hospitals and universities, it significantly increases efficiency, thereby reducing energy costs and greenhouse gas pollution simultaneously. The process is noted for its potential to mitigate global warming profitably. This work is usually done in the form of combined heat and power (also called cogeneration) or waste heat recovery.
Forms of energy recycling:
Waste heat recovery is a process that captures excess heat that would normally be discharged at manufacturing facilities and converts it into electricity and steam, or returns energy to the manufacturing process in the form of heated air, water, glycol, or oil.
A "waste heat recovery boiler" contains a series of water-filled tubes placed throughout the area where heat is released. When high-temperature heat meets the boiler, steam is produced, which in turn powers a turbine that creates electricity. This process is similar to that of other fired boilers, but in this case, waste heat replaces a traditional flame. No fossil fuels are used in this process. Metals, glass, pulp and paper, silicon and other production plants are typical locations where waste heat recovery can be effective.
Waste heat recovery from air conditioning is also used as an alternative to wasting heat to the atmosphere from chiller plants. Heat recovered in summer from chiller plants is stored in Thermal banks in the ground and recycled back to the same building in winter via a heat pump to provide heating without burning fossil fuels. This elegant approach saves energy - and carbon - in both seasons by recycling summer heat for winter use.
Combined heat and power (CHP), also called cogeneration, is, according to the U.S. Environmental Protection Agency, “an efficient, clean, and reliable approach to generating electricity and heat energy from a single fuel source.
By installing a CHP system designed to meet the thermal and electrical base loads of a facility, CHP can greatly increase the facility's operational efficiency and decrease energy costs. At the same time, CHP reduces the emission of greenhouse gases, which contribute to global climate change.” When electricity is produced on-site with a CHP plant, excess heat is recycled to produce both processed heat and additional power.
Enabling technologies: Heat pumps and thermal energy storage are classes of technologies that can enable the recycling of energy that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed.
While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).
Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice).
Short-term thermal storage can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms).
The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.
Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top.
Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).
Current System:
Both waste heat recovery and CHP constitute "decentralized" energy production, which is in contrast to traditional "centralized" power generated at large power plants run by regional utilities. The “centralized” system has an average efficiency of 34 percent, requiring about three units of fuel to produce one unit of power. By capturing both heat and power, CHP and waste heat recovery projects have higher efficiencies.
A 2007 Department of Energy study found the potential for 135,000 megawatts of CHP in the U.S., and a Lawrence Berkley National Laboratory study identified about 64,000 megawatts that could be obtained from industrial waste energy, not counting CHP.
These studies suggest about 200,000 megawatts—or 20% -- of total power capacity that could come from energy recycling in the U.S. Widespread use of energy recycling could therefore reduce global warming emissions by an estimated 20 percent. Indeed, as of 2005, about 42 percent of U.S. greenhouse gas pollution came from the production of electricity and 27 percent from the production of heat.
Advocates contend that recycled energy costs less and has lower emissions than most other energy options in current use.
Currently Recycling Energy Int. Corp. takes advantage of recycling energy in heat recovery ventilation and latent heat pump and CHCP.
History:
Perhaps the first modern use of energy recycling was done by Thomas Edison. His 1882 Pearl Street Station, the world’s first commercial power plant, was a CHP plant, producing both electricity and thermal energy while using waste heat to warm neighboring buildings.
Recycling allowed Edison’s plant to achieve approximately 50 percent efficiency.
By the early 1900s, regulations emerged to promote rural electrification through the construction of centralized plants managed by regional utilities. These regulations not only promoted electrification throughout the countryside, but they also discouraged decentralized power generation, such as CHP. They even went so far as to make it illegal for non-utilities to sell power.
By 1978, Congress recognized that efficiency at central power plants had stagnated and sought to encourage improved efficiency with the Public Utility Regulatory Policies Act (PURPA), which encouraged utilities to buy power from other energy producers. CHP plants proliferated, soon producing about 8 percent of all energy in the U.S. However, the bill left implementation and enforcement up to individual states, resulting in little or nothing being done in many parts of the country.
In 2008 Tom Casten, chairman of Recycled Energy Development, said that "We think we could make about 19 to 20 percent of U.S. electricity with heat that is currently thrown away by industry."
Outside the U.S., energy recycling is more common. Denmark is probably the most active energy recycler, obtaining about 55% of its energy from CHP and waste heat recovery. Other large countries, including Germany, Russia, and India, also obtain a much higher share of their energy from decentralized sources.
___________________________________________________________________________
Energy recovery includes any technique or method of minimizing the input of energy to an overall system by the exchange of energy from one sub-system of the overall system with another. The energy can be in any form in either subsystem, but most energy recovery systems exchange thermal energy in either sensible or latent form.
In some circumstances the use of an enabling technology, either diurnal thermal energy storage or seasonal thermal energy storage (STES, which allows heat or cold storage between opposing seasons), is necessary to make energy recovery practicable.
One example is waste heat from air conditioning machinery stored in a buffer tank to aid in night time heating.
Another is an STES application at a foundry in Sweden. Waste heat is recovered and stored in a large mass of native bedrock which is penetrated by a cluster of 140 heat exchanger equipped boreholes (155mm diameter) that are 150m deep. This store is used for heating an adjacent factory as needed, even months later.
An example of using STES to recover and utilize natural heat that otherwise would be wasted is the Drake Landing Solar Community in Alberta, Canada. The community uses a cluster of boreholes in bedrock for inter-seasonal heat storage, and this enables obtaining 97 percent of the year-round space heating from solar thermal collectors on the garage roofs.
Another STES application is recovering the cold of winter by circulating water through a dry cooling tower, and using that to chill a deep aquifer or borehole cluster. The chill is later recovered from the storage for summer air conditioning. With a coefficient of performance (COP) of 20 to 40, this method of cooling can be ten times more efficient than conventional air conditioning.
A common application of this principle is in systems which have an exhaust stream or waste stream which is transferred from the system to its surroundings. Some of the energy in that flow of material (often gaseous or liquid) may be transferred to the make-up or input material flow.
This input mass flow often comes from the system's surroundings, which, being at ambient conditions, are at a lower temperature than the waste stream. This temperature differential allows heat transfer and thus energy transfer, or in this case, recovery. Thermal energy is often recovered from liquid or gaseous waste streams to fresh make-up air and water intakes in buildings, such as for the HVAC systems, or process systems.
System Approach:
Energy consumption is a key part of most human activities. This consumption involves converting one energy system to another, for example: The conversion of mechanical energy to electrical energy, which can then power computers, light, motors etc.
The input energy propels the work and is mostly converted to heat or follows the product in the process as output energy. Energy recovery systems harvest the output power and provide this as input power to the same or another process.
An energy recovery system will close this energy cycle to prevent the input power from being released back to nature and rather be used in other forms of desired work.
Examples:
Environmental Impact:
There is a large potential for energy recovery in compact systems like large industries and utilities. Together with energy conservation, it should be possible to dramatically reduce world energy consumption. The effect of this will then be:
In 2008 Tom Casten, chairman of Recycled Energy Development, said that "We think we could make about 19 to 20 percent of U.S. electricity with heat that is currently thrown away by industry."
A 2007 Department of Energy study found the potential for 135,000 megawatts of combined heat and power (which uses energy recovery) in the U.S., and a Lawrence Berkley National Laboratory study identified about 64,000 megawatts that could be obtained from industrial waste energy, not counting CHP.
These studies suggest that about 200,000 megawatts, or 20%, of total power capacity could come from energy recycling in the U.S. Widespread use of energy recycling could therefore reduce global warming emissions by an estimated 20 percent. Indeed, as of 2005, about 42% of U.S. greenhouse gas pollution came from the production of electricity and 27% from the production of heat.
It is, however, difficult to quantify the environmental impact of a global energy recovery implementation in some sectors. The main impediments are:
See Also:
Undertaken at manufacturing facilities, power plants, and large institutions such as hospitals and universities, it significantly increases efficiency, thereby reducing energy costs and greenhouse gas pollution simultaneously. The process is noted for its potential to mitigate global warming profitably. This work is usually done in the form of combined heat and power (also called cogeneration) or waste heat recovery.
Forms of energy recycling:
Waste heat recovery is a process that captures excess heat that would normally be discharged at manufacturing facilities and converts it into electricity and steam, or returns energy to the manufacturing process in the form of heated air, water, glycol, or oil.
A "waste heat recovery boiler" contains a series of water-filled tubes placed throughout the area where heat is released. When high-temperature heat meets the boiler, steam is produced, which in turn powers a turbine that creates electricity. This process is similar to that of other fired boilers, but in this case, waste heat replaces a traditional flame. No fossil fuels are used in this process. Metals, glass, pulp and paper, silicon and other production plants are typical locations where waste heat recovery can be effective.
Waste heat recovery from air conditioning is also used as an alternative to wasting heat to the atmosphere from chiller plants. Heat recovered in summer from chiller plants is stored in Thermal banks in the ground and recycled back to the same building in winter via a heat pump to provide heating without burning fossil fuels. This elegant approach saves energy - and carbon - in both seasons by recycling summer heat for winter use.
Combined heat and power (CHP), also called cogeneration, is, according to the U.S. Environmental Protection Agency, “an efficient, clean, and reliable approach to generating electricity and heat energy from a single fuel source.
By installing a CHP system designed to meet the thermal and electrical base loads of a facility, CHP can greatly increase the facility's operational efficiency and decrease energy costs. At the same time, CHP reduces the emission of greenhouse gases, which contribute to global climate change.” When electricity is produced on-site with a CHP plant, excess heat is recycled to produce both processed heat and additional power.
Enabling technologies: Heat pumps and thermal energy storage are classes of technologies that can enable the recycling of energy that would otherwise be inaccessible due to a temperature that is too low for utilization or a time lag between when the energy is available and when it is needed.
While enhancing the temperature of available renewable thermal energy, heat pumps have the additional property of leveraging electrical power (or in some cases mechanical or thermal power) by using it to extract additional energy from a low quality source (such as seawater, lake water, the ground, the air, or waste heat from a process).
Thermal storage technologies allow heat or cold to be stored for periods of time ranging from hours or overnight to interseasonal, and can involve storage of sensible energy (i.e. by changing the temperature of a medium) or latent energy (i.e. through phase changes of a medium, such between water and slush or ice).
Short-term thermal storage can be used for peak-shaving in district heating or electrical distribution systems. Kinds of renewable or alternative energy sources that can be enabled include natural energy (e.g. collected via solar-thermal collectors, or dry cooling towers used to collect winter's cold), waste energy (e.g. from HVAC equipment, industrial processes or power plants), or surplus energy (e.g. as seasonally from hydropower projects or intermittently from wind farms).
The Drake Landing Solar Community (Alberta, Canada) is illustrative. borehole thermal energy storage allows the community to get 97% of its year-round heat from solar collectors on the garage roofs, which most of the heat collected in summer.
Types of storages for sensible energy include insulated tanks, borehole clusters in substrates ranging from gravel to bedrock, deep aquifers, or shallow lined pits that are insulated on top.
Some types of storage are capable of storing heat or cold between opposing seasons (particularly if very large), and some storage applications require inclusion of a heat pump. Latent heat is typically stored in ice tanks or what are called phase-change materials (PCMs).
Current System:
Both waste heat recovery and CHP constitute "decentralized" energy production, which is in contrast to traditional "centralized" power generated at large power plants run by regional utilities. The “centralized” system has an average efficiency of 34 percent, requiring about three units of fuel to produce one unit of power. By capturing both heat and power, CHP and waste heat recovery projects have higher efficiencies.
A 2007 Department of Energy study found the potential for 135,000 megawatts of CHP in the U.S., and a Lawrence Berkley National Laboratory study identified about 64,000 megawatts that could be obtained from industrial waste energy, not counting CHP.
These studies suggest about 200,000 megawatts—or 20% -- of total power capacity that could come from energy recycling in the U.S. Widespread use of energy recycling could therefore reduce global warming emissions by an estimated 20 percent. Indeed, as of 2005, about 42 percent of U.S. greenhouse gas pollution came from the production of electricity and 27 percent from the production of heat.
Advocates contend that recycled energy costs less and has lower emissions than most other energy options in current use.
Currently Recycling Energy Int. Corp. takes advantage of recycling energy in heat recovery ventilation and latent heat pump and CHCP.
History:
Perhaps the first modern use of energy recycling was done by Thomas Edison. His 1882 Pearl Street Station, the world’s first commercial power plant, was a CHP plant, producing both electricity and thermal energy while using waste heat to warm neighboring buildings.
Recycling allowed Edison’s plant to achieve approximately 50 percent efficiency.
By the early 1900s, regulations emerged to promote rural electrification through the construction of centralized plants managed by regional utilities. These regulations not only promoted electrification throughout the countryside, but they also discouraged decentralized power generation, such as CHP. They even went so far as to make it illegal for non-utilities to sell power.
By 1978, Congress recognized that efficiency at central power plants had stagnated and sought to encourage improved efficiency with the Public Utility Regulatory Policies Act (PURPA), which encouraged utilities to buy power from other energy producers. CHP plants proliferated, soon producing about 8 percent of all energy in the U.S. However, the bill left implementation and enforcement up to individual states, resulting in little or nothing being done in many parts of the country.
In 2008 Tom Casten, chairman of Recycled Energy Development, said that "We think we could make about 19 to 20 percent of U.S. electricity with heat that is currently thrown away by industry."
Outside the U.S., energy recycling is more common. Denmark is probably the most active energy recycler, obtaining about 55% of its energy from CHP and waste heat recovery. Other large countries, including Germany, Russia, and India, also obtain a much higher share of their energy from decentralized sources.
___________________________________________________________________________
Energy recovery includes any technique or method of minimizing the input of energy to an overall system by the exchange of energy from one sub-system of the overall system with another. The energy can be in any form in either subsystem, but most energy recovery systems exchange thermal energy in either sensible or latent form.
In some circumstances the use of an enabling technology, either diurnal thermal energy storage or seasonal thermal energy storage (STES, which allows heat or cold storage between opposing seasons), is necessary to make energy recovery practicable.
One example is waste heat from air conditioning machinery stored in a buffer tank to aid in night time heating.
Another is an STES application at a foundry in Sweden. Waste heat is recovered and stored in a large mass of native bedrock which is penetrated by a cluster of 140 heat exchanger equipped boreholes (155mm diameter) that are 150m deep. This store is used for heating an adjacent factory as needed, even months later.
An example of using STES to recover and utilize natural heat that otherwise would be wasted is the Drake Landing Solar Community in Alberta, Canada. The community uses a cluster of boreholes in bedrock for inter-seasonal heat storage, and this enables obtaining 97 percent of the year-round space heating from solar thermal collectors on the garage roofs.
Another STES application is recovering the cold of winter by circulating water through a dry cooling tower, and using that to chill a deep aquifer or borehole cluster. The chill is later recovered from the storage for summer air conditioning. With a coefficient of performance (COP) of 20 to 40, this method of cooling can be ten times more efficient than conventional air conditioning.
A common application of this principle is in systems which have an exhaust stream or waste stream which is transferred from the system to its surroundings. Some of the energy in that flow of material (often gaseous or liquid) may be transferred to the make-up or input material flow.
This input mass flow often comes from the system's surroundings, which, being at ambient conditions, are at a lower temperature than the waste stream. This temperature differential allows heat transfer and thus energy transfer, or in this case, recovery. Thermal energy is often recovered from liquid or gaseous waste streams to fresh make-up air and water intakes in buildings, such as for the HVAC systems, or process systems.
System Approach:
Energy consumption is a key part of most human activities. This consumption involves converting one energy system to another, for example: The conversion of mechanical energy to electrical energy, which can then power computers, light, motors etc.
The input energy propels the work and is mostly converted to heat or follows the product in the process as output energy. Energy recovery systems harvest the output power and provide this as input power to the same or another process.
An energy recovery system will close this energy cycle to prevent the input power from being released back to nature and rather be used in other forms of desired work.
Examples:
- Heat recovery is implemented in heat sources like e.g. a steel mill. Heated cooling water from the process is sold for heating of homes, shops and offices in the surrounding area.
- Regenerative braking is used in electric cars, trains, heavy cranes etc. where the energy consumed when elevating the potential is returned to the electric supplier when released.
- Active pressure reduction systems where the differential pressure in a pressurized fluid flow is recovered rather than converted to heat in a pressure reduction valve and released.
- Energy recovery ventilation
- Water heat recycling
- Heat recovery ventilation
- Heat recovery steam generator
- Cyclone Waste Heat Engine
- Hydrogen turboexpander-generator
- Thermal diode
- Thermal oxidizer
- Thermoelectric Modules
- Waste heat recovery units
Environmental Impact:
There is a large potential for energy recovery in compact systems like large industries and utilities. Together with energy conservation, it should be possible to dramatically reduce world energy consumption. The effect of this will then be:
- Reduced number of coal-fired power plants
- Reduced airborne particles, NOx and CO2 – improved air quality
- Slowing or reducing climate change
- Lower fuel bills on transport
- Longer availability of crude oil
- Change of industries and economies not fully researched
In 2008 Tom Casten, chairman of Recycled Energy Development, said that "We think we could make about 19 to 20 percent of U.S. electricity with heat that is currently thrown away by industry."
A 2007 Department of Energy study found the potential for 135,000 megawatts of combined heat and power (which uses energy recovery) in the U.S., and a Lawrence Berkley National Laboratory study identified about 64,000 megawatts that could be obtained from industrial waste energy, not counting CHP.
These studies suggest that about 200,000 megawatts, or 20%, of total power capacity could come from energy recycling in the U.S. Widespread use of energy recycling could therefore reduce global warming emissions by an estimated 20 percent. Indeed, as of 2005, about 42% of U.S. greenhouse gas pollution came from the production of electricity and 27% from the production of heat.
It is, however, difficult to quantify the environmental impact of a global energy recovery implementation in some sectors. The main impediments are:
- Lack of efficient technologies for private homes. Heat recovery systems in private homes can have an efficiency as low as 30% or less. It may be more realistic to use energy conservation like thermal insulation or improved buildings. Many areas are more dependent on forced cooling and a system for extracting heat from dwellings to be used for other uses are not widely available.
- Ineffective infrastructure. Heat recovery in particular need a short distance from producer to consumer to be viable. A solution may be to move a large consumer to the vicinity of the producer. This may have other complications.
- Transport sector is not ready. With the transport sector using about 20% of the energy supply, most of the energy is spent on overcoming gravity and friction. Electric cars with regenerative braking seem to be the best candidate for energy recovery. Wind systems on ships are under development. Very little work on the airline industry is known in this field.
See Also:
- Efficient energy use
- Energy conservation
- DWEER
- List of energy storage projects
- Mechanical vapor recompression
- Pinch analysis
- Heat recovery: A guide to key systems and applications – Carbon Trust
- Energy Resources Recovery – Idaho National Laboratory
- Energy Recovery from the Combustion of Municipal Solid Waste -EPA
- 26 Projects Funded: Energy Recovery Methods Studied with ASHRAE Undergraduate Grants
- The CMM Group
- Zeropex, technology and products for active pressure reduction
Renewable Energy Sources
TOP: Global New Investments in Renewable Energy
BOTTOM: In 2016, Solar Impulse 2 was the first solar-powered aircraft to complete a circumnavigation of the world
- YouTube Video: Renewable Energy 101 | National Geographic
- YouTube Video: Top 10 Energy Sources of the Future
TOP: Global New Investments in Renewable Energy
BOTTOM: In 2016, Solar Impulse 2 was the first solar-powered aircraft to complete a circumnavigation of the world
Renewable energy is energy that is collected from renewable resources, which are naturally replenished on a human timescale, such as sunlight, wind, rain, tides, waves, and geothermal heat.
Renewable energy often provides energy in four important areas: electricity generation, air and water heating/cooling, transportation, and rural (off-grid) energy services.
Based on REN21's 2016 report, renewables contributed 19.2% to humans' global energy consumption and 23.7% to their generation of electricity in 2014 and 2015, respectively.
This energy consumption is divided as 8.9% coming from traditional biomass, 4.2% as heat energy (modern biomass, geothermal and solar heat), 3.9% hydro electricity and 2.2% is electricity from wind, solar, geothermal, and biomass.
Worldwide investments in renewable technologies amounted to more than US$286 billion in 2015, with countries like China and the United States heavily investing in wind, hydro, solar and biofuels.
Globally, there are an estimated 7.7 million jobs associated with the renewable energy industries, with solar photovoltaics being the largest renewable employer. As of 2015 worldwide, more than half of all new electricity capacity installed was renewable.
Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits.
The results of a recent review of the literature concluded that as greenhouse gas (GHG) emitters begin to be held liable for damages resulting from GHG emissions resulting in climate change, a high value for liability mitigation would provide powerful incentives for deployment of renewable energy technologies.
In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20 percent of energy supply.
National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond. Some places and at least two countries, Iceland and Norway generate all their electricity using renewable energy already, and many other countries have the set a goal to reach 100% renewable energy in the future. For example, in Denmark the government decided to switch the total energy supply (electricity, mobility and heating/cooling) to 100% renewable energy by 2050.
While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas and developing countries, where energy is often crucial in human development. Former United Nations Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.
As most of renewables provide electricity, renewable energy deployment is often applied in conjunction with further electrification, which has several benefits: Electricity can be converted to heat (where necessary generating higher temperatures than fossil fuels), can be converted into mechanical energy with high efficiency and is clean at the point of consumption.
In addition to that, electrification with renewable energy is much more efficient and therefore leads to a significant reduction in primary energy requirements, because most renewables don't have a steam cycle with high losses (fossil power plants usually have losses of 40 to 65%).
Renewable energy systems are rapidly becoming more efficient and cheaper. Their share of total energy consumption is increasing. Growth in consumption of coal and oil could end by 2020 due to increased uptake of renewables and natural gas.
Overview:
See also: Outline of solar energy, Lists of renewable energy topics, and Sustainable energy
Renewable energy flows involve natural phenomena such as sunlight, wind, tides, plant growth, and geothermal heat, as the International Energy Agency explains: Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources.
Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries.
Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits.
It would also reduce environmental pollution such as air pollution caused by burning of fossil fuels and improve public health, reduce premature mortalities due to pollution and save associated health costs that amount to several hundred billion dollars annually only in the United States.
Renewable energy sources, that derive their energy from the sun, either directly or indirectly, such as hydro and wind, are expected to be capable of supplying humanity energy for almost another 1 billion years, at which point the predicted increase in heat from the sun is expected to make the surface of the earth too hot for liquid water to exist.
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization. New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.
According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.
As of 2011, small solar PV systems provide electricity to a few million households, and micro-hydro configured into mini-grids serves many more. Over 44 million households use biogas made in household-scale digesters for lighting and/or cooking, and more than 166 million households rely on a new generation of more-efficient biomass cooking stoves.
United Nations' Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.
At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond, and some 120 countries have various policy targets for longer-term shares of renewable energy, including a 20% target of all electricity generated for the European Union by 2020.
Some countries have much higher long-term policy targets of up to 100% renewables. Outside Europe, a diverse group of 20 or more other countries target renewable energy shares in the 2020–2030 time frame that range from 10% to 50%.
Renewable energy often displaces conventional fuels in four areas: electricity generation, hot water/space heating, transportation, and rural (off-grid) energy services:
Power generation:
By 2040, renewable energy is projected to equal coal and natural gas electricity generation. Several jurisdictions, including Denmark, Germany, the state of South Australia and some US states have achieved high integration of variable renewables.
For example, in 2015 wind power met 42% of electricity demand in Denmark, 23.2% in Portugal and 15.5% in Uruguay. Interconnectors enable countries to balance electricity systems by allowing the import and export of renewable energy. Innovative hybrid systems have emerged between countries and regions.
Heating:
Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180 GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China.
Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well.
In Sweden, national use of biomass energy has surpassed that of oil. Direct geothermal for heating is also growing rapidly. The newest addition to Heating is from Geothermal Heat Pumps which provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing national priority (see also Renewable thermal energy).
Transportation:
Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources such as trees and grasses is also being developed as a feedstock for ethanol production.
Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil.
Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.
A solar vehicle is an electric vehicle powered completely or significantly by direct solar energy. Usually, photovoltaic (PV) cells contained in solar panels convert the sun's energy directly into electric energy.
The term "solar vehicle" usually implies that solar energy is used to power all or part of a vehicle's propulsion. Solar power may be also used to provide power for communications or controls or other auxiliary functions. Solar vehicles are not sold as practical day-to-day transportation devices at present, but are primarily demonstration vehicles and engineering exercises, often sponsored by government agencies. However, indirectly solar-charged vehicles are widespread and solar boats are available commercially.
Click here for the History of Renewable Energy.
Renewable energy often provides energy in four important areas: electricity generation, air and water heating/cooling, transportation, and rural (off-grid) energy services.
Based on REN21's 2016 report, renewables contributed 19.2% to humans' global energy consumption and 23.7% to their generation of electricity in 2014 and 2015, respectively.
This energy consumption is divided as 8.9% coming from traditional biomass, 4.2% as heat energy (modern biomass, geothermal and solar heat), 3.9% hydro electricity and 2.2% is electricity from wind, solar, geothermal, and biomass.
Worldwide investments in renewable technologies amounted to more than US$286 billion in 2015, with countries like China and the United States heavily investing in wind, hydro, solar and biofuels.
Globally, there are an estimated 7.7 million jobs associated with the renewable energy industries, with solar photovoltaics being the largest renewable employer. As of 2015 worldwide, more than half of all new electricity capacity installed was renewable.
Renewable energy resources exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries. Rapid deployment of renewable energy and energy efficiency is resulting in significant energy security, climate change mitigation, and economic benefits.
The results of a recent review of the literature concluded that as greenhouse gas (GHG) emitters begin to be held liable for damages resulting from GHG emissions resulting in climate change, a high value for liability mitigation would provide powerful incentives for deployment of renewable energy technologies.
In international public opinion surveys there is strong support for promoting renewable sources such as solar power and wind power. At the national level, at least 30 nations around the world already have renewable energy contributing more than 20 percent of energy supply.
National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond. Some places and at least two countries, Iceland and Norway generate all their electricity using renewable energy already, and many other countries have the set a goal to reach 100% renewable energy in the future. For example, in Denmark the government decided to switch the total energy supply (electricity, mobility and heating/cooling) to 100% renewable energy by 2050.
While many renewable energy projects are large-scale, renewable technologies are also suited to rural and remote areas and developing countries, where energy is often crucial in human development. Former United Nations Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.
As most of renewables provide electricity, renewable energy deployment is often applied in conjunction with further electrification, which has several benefits: Electricity can be converted to heat (where necessary generating higher temperatures than fossil fuels), can be converted into mechanical energy with high efficiency and is clean at the point of consumption.
In addition to that, electrification with renewable energy is much more efficient and therefore leads to a significant reduction in primary energy requirements, because most renewables don't have a steam cycle with high losses (fossil power plants usually have losses of 40 to 65%).
Renewable energy systems are rapidly becoming more efficient and cheaper. Their share of total energy consumption is increasing. Growth in consumption of coal and oil could end by 2020 due to increased uptake of renewables and natural gas.
Overview:
See also: Outline of solar energy, Lists of renewable energy topics, and Sustainable energy
Renewable energy flows involve natural phenomena such as sunlight, wind, tides, plant growth, and geothermal heat, as the International Energy Agency explains: Renewable energy is derived from natural processes that are replenished constantly. In its various forms, it derives directly from the sun, or from heat generated deep within the earth. Included in the definition is electricity and heat generated from solar, wind, ocean, hydropower, biomass, geothermal resources, and biofuels and hydrogen derived from renewable resources.
Renewable energy resources and significant opportunities for energy efficiency exist over wide geographical areas, in contrast to other energy sources, which are concentrated in a limited number of countries.
Rapid deployment of renewable energy and energy efficiency, and technological diversification of energy sources, would result in significant energy security and economic benefits.
It would also reduce environmental pollution such as air pollution caused by burning of fossil fuels and improve public health, reduce premature mortalities due to pollution and save associated health costs that amount to several hundred billion dollars annually only in the United States.
Renewable energy sources, that derive their energy from the sun, either directly or indirectly, such as hydro and wind, are expected to be capable of supplying humanity energy for almost another 1 billion years, at which point the predicted increase in heat from the sun is expected to make the surface of the earth too hot for liquid water to exist.
Climate change and global warming concerns, coupled with high oil prices, peak oil, and increasing government support, are driving increasing renewable energy legislation, incentives and commercialization. New government spending, regulation and policies helped the industry weather the global financial crisis better than many other sectors.
According to a 2011 projection by the International Energy Agency, solar power generators may produce most of the world's electricity within 50 years, reducing the emissions of greenhouse gases that harm the environment.
As of 2011, small solar PV systems provide electricity to a few million households, and micro-hydro configured into mini-grids serves many more. Over 44 million households use biogas made in household-scale digesters for lighting and/or cooking, and more than 166 million households rely on a new generation of more-efficient biomass cooking stoves.
United Nations' Secretary-General Ban Ki-moon has said that renewable energy has the ability to lift the poorest nations to new levels of prosperity.
At the national level, at least 30 nations around the world already have renewable energy contributing more than 20% of energy supply. National renewable energy markets are projected to continue to grow strongly in the coming decade and beyond, and some 120 countries have various policy targets for longer-term shares of renewable energy, including a 20% target of all electricity generated for the European Union by 2020.
Some countries have much higher long-term policy targets of up to 100% renewables. Outside Europe, a diverse group of 20 or more other countries target renewable energy shares in the 2020–2030 time frame that range from 10% to 50%.
Renewable energy often displaces conventional fuels in four areas: electricity generation, hot water/space heating, transportation, and rural (off-grid) energy services:
Power generation:
By 2040, renewable energy is projected to equal coal and natural gas electricity generation. Several jurisdictions, including Denmark, Germany, the state of South Australia and some US states have achieved high integration of variable renewables.
For example, in 2015 wind power met 42% of electricity demand in Denmark, 23.2% in Portugal and 15.5% in Uruguay. Interconnectors enable countries to balance electricity systems by allowing the import and export of renewable energy. Innovative hybrid systems have emerged between countries and regions.
Heating:
Solar water heating makes an important contribution to renewable heat in many countries, most notably in China, which now has 70% of the global total (180 GWth). Most of these systems are installed on multi-family apartment buildings and meet a portion of the hot water needs of an estimated 50–60 million households in China.
Worldwide, total installed solar water heating systems meet a portion of the water heating needs of over 70 million households. The use of biomass for heating continues to grow as well.
In Sweden, national use of biomass energy has surpassed that of oil. Direct geothermal for heating is also growing rapidly. The newest addition to Heating is from Geothermal Heat Pumps which provide both heating and cooling, and also flatten the electric demand curve and are thus an increasing national priority (see also Renewable thermal energy).
Transportation:
Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources such as trees and grasses is also being developed as a feedstock for ethanol production.
Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil.
Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.
A solar vehicle is an electric vehicle powered completely or significantly by direct solar energy. Usually, photovoltaic (PV) cells contained in solar panels convert the sun's energy directly into electric energy.
The term "solar vehicle" usually implies that solar energy is used to power all or part of a vehicle's propulsion. Solar power may be also used to provide power for communications or controls or other auxiliary functions. Solar vehicles are not sold as practical day-to-day transportation devices at present, but are primarily demonstration vehicles and engineering exercises, often sponsored by government agencies. However, indirectly solar-charged vehicles are widespread and solar boats are available commercially.
Click here for the History of Renewable Energy.
Energy Conservation
YouTube Video: What is Energy Conservation? by National Geographic
Energy conservation are efforts made to reduce the consumption of energy by using less of an energy service. This can be achieved either by using energy more efficiently (using less energy for a constant service) or by reducing the amount of services used (for example, by driving less).
Energy conservation is a part of the concept of eco-sufficiency. Energy conservation reduces the need for energy services, and can result in increased environmental quality, national security, personal financial security and higher savings. It is at the top of the sustainable energy hierarchy. It also lowers energy costs by preventing future resource depletion.
Click on any of the following blue hyperlinks for more about Energy Conservation:
Energy conservation is a part of the concept of eco-sufficiency. Energy conservation reduces the need for energy services, and can result in increased environmental quality, national security, personal financial security and higher savings. It is at the top of the sustainable energy hierarchy. It also lowers energy costs by preventing future resource depletion.
Click on any of the following blue hyperlinks for more about Energy Conservation:
- Energy tax
- Building design
- Transportation
- Consumer products
- See also:
- Annual fuel use efficiency
- Domestic energy consumption
- Efficient energy use
- Energy conservation law
- Energy crisis
- Energy monitoring and targeting
- Energy recovery
- EU Energy Efficiency Directive 2012/27/EU
- Green computing
- Heat pump
- High-temperature insulation wool
- Jevons paradox
- Khazzoom–Brookes postulate
- List of energy storage projects
- List of low-energy building techniques
- Low Carbon Communities
- Marine fuel management
- Minimum energy performance standard
- One Watt Initiative
- Overconsumption
- Passive house
- Renewable heat
- Smart grid
- Superinsulation
- Thermal efficiency
- Universal Metering Interface (UMI)
- Window film
- Zero-energy building
Energy Conservation in the United States
YouTube Video about Energy Conservation in the United States
by National Geographic
PICTURED BELOW:
TOP: U.S. Energy Consumption, 2016
BOTTOM: Distribution of energy consumption in the United States, 2004. Data was compiled for all fuel sources, converted to BTU's, and assigned to 1 of 4 sectors. This pie chart was created by wikipedia user InNuce, using data published by the U.S. Energy Information Administration .
The United States is the second-largest single consumer of energy in the world. The U.S. Department of Energy categorizes national energy use in four broad sectors: transportation, residential, commercial, and industrial.
Energy usage in transportation and residential sectors (about half of U.S. energy consumption) is largely controlled by individual domestic consumers. Commercial and industrial energy expenditures are determined by businesses entities and other facility managers. National energy policy has a significant effect on energy usage across all four sectors. (as follows):
Section 1: Transportation:
The transportation sector includes all vehicles used for personal or freight transportation. Of the energy used in this sector, approximately 65% is consumed by gasoline-powered vehicles, primarily personally owned. Diesel-powered transport (trains, merchant ships, heavy trucks, etc.) consumes about 20%, and air traffic consumes most of the remaining 15%.
The two oil supply crisis of the 1970s spurred the creation, in 1975, of the federal Corporate Average Fuel Economy (CAFE) program, which required auto manufacturers to meet progressively higher fleet fuel economy targets.
The next decade saw dramatic improvements in fuel economy, mostly the result of reductions in vehicle size and weight which originated in the late 1970s, along with the transition to front wheel drive. These gains eroded somewhat after 1990 due to the growing popularity of sport utility vehicles, pickup trucks and minivans, which fall under the more lenient "light truck" CAFE standard.
In addition to the CAFE program, the U.S. government has tried to encourage better vehicle efficiency through tax policy. Since 2002, taxpayers have been eligible for income tax credits for gas/electric hybrid vehicles. A "gas-guzzler" tax has been assessed on manufacturers since 1978 for cars with exceptionally poor fuel economy. While this tax remains in effect, it generates very little revenue as overall fuel economy has improved.
Another focus in gasoline conservation is reducing the number of miles driven. An estimated 40% of American automobile use is associated with daily commuting. Many urban areas offer subsidized public transportation to reduce commuting traffic, and encourage carpooling by providing designated high-occupancy vehicle lanes and lower tolls for cars with multiple riders.
In recent years telecommuting has also become a viable alternative to commuting for some jobs, but in 2003 only 3.5% of workers were telecommuters. Ironically, hundreds of thousands of American and European workers have been replaced by workers in Asia who telecommute from thousands of miles away.
Fuel economy-maximizing behaviors also help reduce fuel consumption. Among the most effective are moderate (as opposed to aggressive) driving, driving at lower speeds, using cruise control, and turning off a vehicle's engine at stops rather than idling. A vehicle's gas mileage decreases rapidly with increasing highway speeds, normally above 55 miles per hour (though the exact number varies by vehicle), because aerodynamic forces are proportionally related to the square of an object's speed (when the speed is doubled, drag quadruples).
According to the U.S. Department of Energy (DOE), as a rule of thumb, each 5 mph (8.0 km/h) one drives over 60 mph (97 km/h) is similar to paying an additional $0.30 per gallon for gas. The exact speed at which a vehicle achieves its highest efficiency varies based on the vehicle's drag coefficient, frontal area, surrounding air speed, and the efficiency and gearing of a vehicle's drive train and transmission.
Sector 2: Residential:
The residential sector is all private residences, including single-family homes, apartments, manufactured homes and dormitories. Energy use in this sector varies significantly across the country, due to regional climate differences and different regulation. On average, about half of the energy used in U.S. homes is expended on space conditioning (i.e. heating and cooling).
The efficiency of furnaces and air conditioners has increased steadily since the energy crises of the 1970s. The 1987 National Appliance Energy Conservation Act authorized the Department of Energy to set minimum efficiency standards for space conditioning equipment and other appliances each year, based on what is "technologically feasible and economically justified".
Beyond these minimum standards, the Environmental Protection Agency (EPA) awards the Energy Star designation to appliances that exceed industry efficiency averages by an EPA-specified percentage.
Despite technological improvements, many American lifestyle changes have put higher demands on heating and cooling resources. The average size of homes built in the United States has increased from 1,500 sq ft (140 m2) in 1970 to 2,300 sq ft (210 m2) in 2005. The single-person household has become more common, as has central air conditioning: 23% of households had central air conditioning in 1978, that figure rose to 55% by 2001.
As furnace efficiency gets higher, appropriate matching of equipment size to distribution system capacity and building load becomes more critical to optimizing equipment ability to maximize efficient operation.
Installing much lower output high-efficiency replacement equipment offers opportunity for comfort and savings gains, but improving the building envelope through air sealing and adding more insulation, advanced windows, etc., should be explored concurrently or before replacement equipment design stage.
The passive house approach produces superinsulated buildings that approach zero net energy consumption. Improving the building envelope can also be cheaper than replacing a furnace or air conditioner.
Even lower cost improvements include weatherization, which is frequently subsidized by utilities or state and federal tax credits, as are programmable thermostats. Consumers have also been urged to adopt a wider indoor temperature range (e.g. 65 °F (18 °C) in the winter, 80 °F (27 °C) in the summer).
One underutilized, but potentially very powerful means to reduce household energy consumption is to provide real-time feedback to homeowners so they can effectively alter their energy using behavior.
Low-cost energy feedback displays, such as the Energy Detective or Wattvision, have become available. A study of a similar device deployed in 500 homes in Ontario, Canada, by Hydro One showed an average 6.5% drop in total electricity use when compared with a similarly sized control group. Another technique is to ask homeowners to conserve energy in real time at times of peak demand, when relatively dirty power plants would otherwise need to be turned on.
Standby power used by consumer electronics and appliances while they are turned off accounts for an estimated 5 to 10% of household electricity consumption, adding an estimated $3 billion to annual energy costs in the USA. "In the average home, 75% of the electricity used to power home electronics is consumed while the products are turned off."
Click on the following blue hyperlinks for more about the Residential Sector:
Sector #3: Commercial:
The commercial sector consists of retail stores, offices (business and government), restaurants, schools and other workplaces. Energy in this sector has the same basic end uses as the residential sector, in slightly different proportions.
Space conditioning is again the single biggest consumption area, but it represents only about 30% of the energy use of commercial buildings. Lighting, at 25%, plays a much larger role than it does in the residential sector. Lighting is also generally the most wasteful component of commercial use. A number of case studies indicate that more efficient lighting and elimination of over-illumination can reduce lighting energy by approximately fifty percent in many commercial buildings.
Commercial buildings can greatly increase energy efficiency by thoughtful design, with today's building stock being very poor examples of the potential of systematic (not expensive) energy efficient design. Commercial buildings often have professional management, allowing centralized control and coordination of energy conservation efforts.
As a result, fluorescent lighting (about four times as efficient as incandescent) is the standard for most commercial space, although it may produce certain adverse health effects. Potential health concerns can be mitigated by using newer fixtures with electronic ballasts rather than older magnetic ballasts.
As most buildings have consistent hours of operation, programmed thermostats and lighting controls are common. However, too many companies believe that merely having a computer controlled Building automation system guarantees energy efficiency. As an example one large company in Northern California boasted that it was confident its state of the art system had optimized space heating.
A more careful analysis by Lumina Technologies showed the system had been given programming instructions to maintain constant 24‑hour temperatures in the entire building complex. This instruction caused the injection of nighttime heat into vacant buildings when the daytime summer temperatures would often exceed 90 °F (32 °C). This mis-programming was costing the company over $130,000 per year in wasted energy (Lumina Technologies, 1997).
Many corporations and governments also require the Energy Star rating for any new equipment purchased for their buildings.
Solar heat loading through standard window designs usually leads to high demand for air conditioning in summer months. An example of building design overcoming this excessive heat loading is the Dakin Building in Brisbane, California, where fenestration was designed to achieve an angle with respect to sun incidence to allow maximum reflection of solar heat; this design also assisted in reducing interior over-illumination to enhance worker efficiency and comfort.
Advances include use of occupancy sensors to turn off lights when spaces are unoccupied, and photosensors to dim or turn off electric lighting when natural light is available. In air conditioning systems, overall equipment efficiencies have increased as energy codes and consumer information have begun to emphasise year-round performance rather than just efficiency ratings at maximum output. Controllers that automatically vary the speeds of fans, pumps, and compressors have radically improved part-load performance of those devices.
For space or water heating, electric heat pumps consume roughly half the energy required by electric resistance heaters. Natural gas heating efficiencies have improved through use of condensing furnaces and boilers, in which the water vapor in the flue gas is cooled to liquid form before it is discharged, allowing the heat of condensation to be used. In buildings where high levels of outside air are required, heat exchangers can capture heat from the exhaust air to preheat incoming supply air.
A company in Florida tackled the issue of both energy-conservation and enhancing its workplace environment by implementing a conveyor system that is 40–60% quieter than traditional systems, emitting a noise level of only 55-50 decibels, equivalent to a soft-rock radio station. Lighting was addressed by not only programming the lighting console so that isolated lights could be switched on and off in designated areas of the warehouse, but also by enhancing natural lighting through the use of skylights and a high-gloss floor.[
Sector #4: Industrial:
The industrial sector represents all production and processing of goods, including manufacturing, construction, farming, water management and mining.
Increasing costs have forced energy-intensive industries to make substantial efficiency improvements in the past 30 years.
For example, the energy used to produce steel and paper products has been cut 40% in that time frame, while petroleum/aluminum refining and cement production have reduced their usage by about 25%. These reductions are largely the result of recycling waste material and the use of cogeneration equipment for electricity and heating.
Another example for efficiency improvements is the use of products made of high temperature insulation wool (HTIW) which enables predominantly industrial users to operate thermal treatment plants at temperatures between 800 and 1400 °C.
In these high-temperature applications, the consumption of primary energy and the associated CO2 emissions can be reduced by up to 50% compared with old-fashioned industrial installations. The application of products made of high temperature insulation wool is becoming increasingly important against the background of the dramatic rising cost of energy.
U.S. agriculture has doubled farm energy efficiency in the last 25 years.
The energy required for delivery and treatment of fresh water often constitutes a significant percentage of a region's electricity and natural gas usage (an estimated 20% of California's total energy use is water-related). In light of this, some local governments have worked toward a more integrated approach to energy and water conservation efforts.
To conserve energy, some industries have begun using solar panels to heat their water.
Unlike the other sectors, total energy use in the industrial sector has declined in the last decade. While this is partly due to conservation efforts, it is also a reflection of the growing trend for U.S. companies to move manufacturing operations overseas.
Government incentives and initiatives:
Part B of Title III of the Energy Policy and Conservation Act established the Energy Conservation Program for Consumer Products other than Automobiles, which gives the Department of Energy the "authority to develop, revise, and implement minimum energy conservation standards for appliances and equipment."
As currently implemented, the Department of Energy enforces test procedures and minimum standards for more than 50 products covering residential, commercial and industrial, lighting, and plumbing applications.
The Energy Policy Act of 2005 included incentives which provided a tax credit of 30% of the cost of the new item with a $500 aggregate limit; the program was initially set to expire at the end of 2007 but was extended to 2010 and the aggregate limit increased to $1,500 by the Energy Improvement and Extension Act of 2008 and The American Recovery and Reinvestment Act of 2009, when it will expire.
The states and local areas (e.g., cities or counties) have various initiatives, and the U.S. Department of Energy has funded a database known as DSIRE which provides information on these initiatives. The state of Maryland set a target of reducing its electricity usage by 15% from 2008 to 2015.
By Executive Order 13514, U.S. President Barack Obama mandated that by 2015, 15% of existing Federal buildings conform to new energy efficiency standards and 100% of all new Federal buildings be zero-net-energy by 2030.
See Also:
Energy usage in transportation and residential sectors (about half of U.S. energy consumption) is largely controlled by individual domestic consumers. Commercial and industrial energy expenditures are determined by businesses entities and other facility managers. National energy policy has a significant effect on energy usage across all four sectors. (as follows):
Section 1: Transportation:
The transportation sector includes all vehicles used for personal or freight transportation. Of the energy used in this sector, approximately 65% is consumed by gasoline-powered vehicles, primarily personally owned. Diesel-powered transport (trains, merchant ships, heavy trucks, etc.) consumes about 20%, and air traffic consumes most of the remaining 15%.
The two oil supply crisis of the 1970s spurred the creation, in 1975, of the federal Corporate Average Fuel Economy (CAFE) program, which required auto manufacturers to meet progressively higher fleet fuel economy targets.
The next decade saw dramatic improvements in fuel economy, mostly the result of reductions in vehicle size and weight which originated in the late 1970s, along with the transition to front wheel drive. These gains eroded somewhat after 1990 due to the growing popularity of sport utility vehicles, pickup trucks and minivans, which fall under the more lenient "light truck" CAFE standard.
In addition to the CAFE program, the U.S. government has tried to encourage better vehicle efficiency through tax policy. Since 2002, taxpayers have been eligible for income tax credits for gas/electric hybrid vehicles. A "gas-guzzler" tax has been assessed on manufacturers since 1978 for cars with exceptionally poor fuel economy. While this tax remains in effect, it generates very little revenue as overall fuel economy has improved.
Another focus in gasoline conservation is reducing the number of miles driven. An estimated 40% of American automobile use is associated with daily commuting. Many urban areas offer subsidized public transportation to reduce commuting traffic, and encourage carpooling by providing designated high-occupancy vehicle lanes and lower tolls for cars with multiple riders.
In recent years telecommuting has also become a viable alternative to commuting for some jobs, but in 2003 only 3.5% of workers were telecommuters. Ironically, hundreds of thousands of American and European workers have been replaced by workers in Asia who telecommute from thousands of miles away.
Fuel economy-maximizing behaviors also help reduce fuel consumption. Among the most effective are moderate (as opposed to aggressive) driving, driving at lower speeds, using cruise control, and turning off a vehicle's engine at stops rather than idling. A vehicle's gas mileage decreases rapidly with increasing highway speeds, normally above 55 miles per hour (though the exact number varies by vehicle), because aerodynamic forces are proportionally related to the square of an object's speed (when the speed is doubled, drag quadruples).
According to the U.S. Department of Energy (DOE), as a rule of thumb, each 5 mph (8.0 km/h) one drives over 60 mph (97 km/h) is similar to paying an additional $0.30 per gallon for gas. The exact speed at which a vehicle achieves its highest efficiency varies based on the vehicle's drag coefficient, frontal area, surrounding air speed, and the efficiency and gearing of a vehicle's drive train and transmission.
Sector 2: Residential:
The residential sector is all private residences, including single-family homes, apartments, manufactured homes and dormitories. Energy use in this sector varies significantly across the country, due to regional climate differences and different regulation. On average, about half of the energy used in U.S. homes is expended on space conditioning (i.e. heating and cooling).
The efficiency of furnaces and air conditioners has increased steadily since the energy crises of the 1970s. The 1987 National Appliance Energy Conservation Act authorized the Department of Energy to set minimum efficiency standards for space conditioning equipment and other appliances each year, based on what is "technologically feasible and economically justified".
Beyond these minimum standards, the Environmental Protection Agency (EPA) awards the Energy Star designation to appliances that exceed industry efficiency averages by an EPA-specified percentage.
Despite technological improvements, many American lifestyle changes have put higher demands on heating and cooling resources. The average size of homes built in the United States has increased from 1,500 sq ft (140 m2) in 1970 to 2,300 sq ft (210 m2) in 2005. The single-person household has become more common, as has central air conditioning: 23% of households had central air conditioning in 1978, that figure rose to 55% by 2001.
As furnace efficiency gets higher, appropriate matching of equipment size to distribution system capacity and building load becomes more critical to optimizing equipment ability to maximize efficient operation.
Installing much lower output high-efficiency replacement equipment offers opportunity for comfort and savings gains, but improving the building envelope through air sealing and adding more insulation, advanced windows, etc., should be explored concurrently or before replacement equipment design stage.
The passive house approach produces superinsulated buildings that approach zero net energy consumption. Improving the building envelope can also be cheaper than replacing a furnace or air conditioner.
Even lower cost improvements include weatherization, which is frequently subsidized by utilities or state and federal tax credits, as are programmable thermostats. Consumers have also been urged to adopt a wider indoor temperature range (e.g. 65 °F (18 °C) in the winter, 80 °F (27 °C) in the summer).
One underutilized, but potentially very powerful means to reduce household energy consumption is to provide real-time feedback to homeowners so they can effectively alter their energy using behavior.
Low-cost energy feedback displays, such as the Energy Detective or Wattvision, have become available. A study of a similar device deployed in 500 homes in Ontario, Canada, by Hydro One showed an average 6.5% drop in total electricity use when compared with a similarly sized control group. Another technique is to ask homeowners to conserve energy in real time at times of peak demand, when relatively dirty power plants would otherwise need to be turned on.
Standby power used by consumer electronics and appliances while they are turned off accounts for an estimated 5 to 10% of household electricity consumption, adding an estimated $3 billion to annual energy costs in the USA. "In the average home, 75% of the electricity used to power home electronics is consumed while the products are turned off."
Click on the following blue hyperlinks for more about the Residential Sector:
Sector #3: Commercial:
The commercial sector consists of retail stores, offices (business and government), restaurants, schools and other workplaces. Energy in this sector has the same basic end uses as the residential sector, in slightly different proportions.
Space conditioning is again the single biggest consumption area, but it represents only about 30% of the energy use of commercial buildings. Lighting, at 25%, plays a much larger role than it does in the residential sector. Lighting is also generally the most wasteful component of commercial use. A number of case studies indicate that more efficient lighting and elimination of over-illumination can reduce lighting energy by approximately fifty percent in many commercial buildings.
Commercial buildings can greatly increase energy efficiency by thoughtful design, with today's building stock being very poor examples of the potential of systematic (not expensive) energy efficient design. Commercial buildings often have professional management, allowing centralized control and coordination of energy conservation efforts.
As a result, fluorescent lighting (about four times as efficient as incandescent) is the standard for most commercial space, although it may produce certain adverse health effects. Potential health concerns can be mitigated by using newer fixtures with electronic ballasts rather than older magnetic ballasts.
As most buildings have consistent hours of operation, programmed thermostats and lighting controls are common. However, too many companies believe that merely having a computer controlled Building automation system guarantees energy efficiency. As an example one large company in Northern California boasted that it was confident its state of the art system had optimized space heating.
A more careful analysis by Lumina Technologies showed the system had been given programming instructions to maintain constant 24‑hour temperatures in the entire building complex. This instruction caused the injection of nighttime heat into vacant buildings when the daytime summer temperatures would often exceed 90 °F (32 °C). This mis-programming was costing the company over $130,000 per year in wasted energy (Lumina Technologies, 1997).
Many corporations and governments also require the Energy Star rating for any new equipment purchased for their buildings.
Solar heat loading through standard window designs usually leads to high demand for air conditioning in summer months. An example of building design overcoming this excessive heat loading is the Dakin Building in Brisbane, California, where fenestration was designed to achieve an angle with respect to sun incidence to allow maximum reflection of solar heat; this design also assisted in reducing interior over-illumination to enhance worker efficiency and comfort.
Advances include use of occupancy sensors to turn off lights when spaces are unoccupied, and photosensors to dim or turn off electric lighting when natural light is available. In air conditioning systems, overall equipment efficiencies have increased as energy codes and consumer information have begun to emphasise year-round performance rather than just efficiency ratings at maximum output. Controllers that automatically vary the speeds of fans, pumps, and compressors have radically improved part-load performance of those devices.
For space or water heating, electric heat pumps consume roughly half the energy required by electric resistance heaters. Natural gas heating efficiencies have improved through use of condensing furnaces and boilers, in which the water vapor in the flue gas is cooled to liquid form before it is discharged, allowing the heat of condensation to be used. In buildings where high levels of outside air are required, heat exchangers can capture heat from the exhaust air to preheat incoming supply air.
A company in Florida tackled the issue of both energy-conservation and enhancing its workplace environment by implementing a conveyor system that is 40–60% quieter than traditional systems, emitting a noise level of only 55-50 decibels, equivalent to a soft-rock radio station. Lighting was addressed by not only programming the lighting console so that isolated lights could be switched on and off in designated areas of the warehouse, but also by enhancing natural lighting through the use of skylights and a high-gloss floor.[
Sector #4: Industrial:
The industrial sector represents all production and processing of goods, including manufacturing, construction, farming, water management and mining.
Increasing costs have forced energy-intensive industries to make substantial efficiency improvements in the past 30 years.
For example, the energy used to produce steel and paper products has been cut 40% in that time frame, while petroleum/aluminum refining and cement production have reduced their usage by about 25%. These reductions are largely the result of recycling waste material and the use of cogeneration equipment for electricity and heating.
Another example for efficiency improvements is the use of products made of high temperature insulation wool (HTIW) which enables predominantly industrial users to operate thermal treatment plants at temperatures between 800 and 1400 °C.
In these high-temperature applications, the consumption of primary energy and the associated CO2 emissions can be reduced by up to 50% compared with old-fashioned industrial installations. The application of products made of high temperature insulation wool is becoming increasingly important against the background of the dramatic rising cost of energy.
U.S. agriculture has doubled farm energy efficiency in the last 25 years.
The energy required for delivery and treatment of fresh water often constitutes a significant percentage of a region's electricity and natural gas usage (an estimated 20% of California's total energy use is water-related). In light of this, some local governments have worked toward a more integrated approach to energy and water conservation efforts.
To conserve energy, some industries have begun using solar panels to heat their water.
Unlike the other sectors, total energy use in the industrial sector has declined in the last decade. While this is partly due to conservation efforts, it is also a reflection of the growing trend for U.S. companies to move manufacturing operations overseas.
Government incentives and initiatives:
Part B of Title III of the Energy Policy and Conservation Act established the Energy Conservation Program for Consumer Products other than Automobiles, which gives the Department of Energy the "authority to develop, revise, and implement minimum energy conservation standards for appliances and equipment."
As currently implemented, the Department of Energy enforces test procedures and minimum standards for more than 50 products covering residential, commercial and industrial, lighting, and plumbing applications.
The Energy Policy Act of 2005 included incentives which provided a tax credit of 30% of the cost of the new item with a $500 aggregate limit; the program was initially set to expire at the end of 2007 but was extended to 2010 and the aggregate limit increased to $1,500 by the Energy Improvement and Extension Act of 2008 and The American Recovery and Reinvestment Act of 2009, when it will expire.
The states and local areas (e.g., cities or counties) have various initiatives, and the U.S. Department of Energy has funded a database known as DSIRE which provides information on these initiatives. The state of Maryland set a target of reducing its electricity usage by 15% from 2008 to 2015.
By Executive Order 13514, U.S. President Barack Obama mandated that by 2015, 15% of existing Federal buildings conform to new energy efficiency standards and 100% of all new Federal buildings be zero-net-energy by 2030.
See Also:
- Earthship
- Energy and the environment
- Efficient energy use
- Environment of the United States
- Focus on Energy
- Passive house
- Portland Energy Conservation
- Superinsulation
- Self-sufficient homes
- Zero energy building
- Zero-Net-Energy USA Federal Buildings
- GA Mansoori, N Enayati, LB Agyarko (2016), Energy: Sources, Utilization, Legislation, Sustainability, Illinois as Model State, World Sci. Pub. Co., ISBN 978-981-4704-00-7
- US Department of Energy - resources for industry
- Energy usage by state, by fuel and per capita, 2007
- American Council for an Energy-Efficient Economy
Energy created from Wind
YouTube Video: How Wind Turbines Work by U.S. Department of Energy
Pictured: Huge Forest of Giant Wind Turbines Near Palm Springs In Southern California
Wind power is the use of air flow through wind turbines to mechanically power generators for electric power. Wind power, as an alternative to burning fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, consumes no water, and uses little land. The net effects on the environment are far less problematic than those of nonrenewable power sources.
Wind farms consist of many individual wind turbines which are connected to the electric power transmission network. Onshore wind is an inexpensive source of electric power, competitive with or in many places cheaper than coal or gas plants. Offshore wind is steadier and stronger than on land, and offshore farms have less visual impact, but construction and maintenance costs are considerably higher. Small onshore wind farms can feed some energy into the grid or provide electric power to isolated off-grid locations.
Wind power gives variable power which is very consistent from year to year but which has significant variation over shorter time scales. It is therefore used in conjunction with other electric power sources to give a reliable supply. As the proportion of wind power in a region increases, a need to upgrade the grid, and a lowered ability to supplant conventional production can occur.
Power management techniques such as having excess capacity, geographically distributed turbines, dispatchable backing sources, sufficient hydroelectric power, exporting and importing power to neighboring areas, or reducing demand when wind production is low, can in many cases overcome these problems. In addition, weather forecasting permits the electric power network to be readied for the predictable variations in production that occur.
As of 2015, Denmark generates 40% of its electric power from wind, and at least 83 other countries around the world are using wind power to supply their electric power grids. In 2014, global wind power capacity expanded 16% to 369,553 MW. Yearly wind energy production is also growing rapidly and has reached around 4% of worldwide electric power usage, 11.4% in the EU.
Click on any of the following blue hyperlinks for more about Wind Power:
Wind farms consist of many individual wind turbines which are connected to the electric power transmission network. Onshore wind is an inexpensive source of electric power, competitive with or in many places cheaper than coal or gas plants. Offshore wind is steadier and stronger than on land, and offshore farms have less visual impact, but construction and maintenance costs are considerably higher. Small onshore wind farms can feed some energy into the grid or provide electric power to isolated off-grid locations.
Wind power gives variable power which is very consistent from year to year but which has significant variation over shorter time scales. It is therefore used in conjunction with other electric power sources to give a reliable supply. As the proportion of wind power in a region increases, a need to upgrade the grid, and a lowered ability to supplant conventional production can occur.
Power management techniques such as having excess capacity, geographically distributed turbines, dispatchable backing sources, sufficient hydroelectric power, exporting and importing power to neighboring areas, or reducing demand when wind production is low, can in many cases overcome these problems. In addition, weather forecasting permits the electric power network to be readied for the predictable variations in production that occur.
As of 2015, Denmark generates 40% of its electric power from wind, and at least 83 other countries around the world are using wind power to supply their electric power grids. In 2014, global wind power capacity expanded 16% to 369,553 MW. Yearly wind energy production is also growing rapidly and has reached around 4% of worldwide electric power usage, 11.4% in the EU.
Click on any of the following blue hyperlinks for more about Wind Power:
- History
- Wind farms
- Wind power capacity and production
- Economics
- Small-scale wind power
- Environmental effects
- Politics
- Turbine design
- Wind energy
- Gallery
- See also:
- Airborne wind turbine
- Cost of electricity by source
- Global Wind Day
- List of countries by electricity production from renewable sources
- List of wind turbine manufacturers
- Lists of offshore wind farms by country
- Lists of wind farms by country
- Outline of wind energy
- GA Mansoori, N Enayati, LB Agyarko (2016), Energy: Sources, Utilization, Legislation, Sustainability, Illinois as Model State, World Sci. Pub. Co.
- Renewable energy by country
- World Wind Energy Association (WWEA)
- Tethys – an online knowledge management system that provides the offshore wind community with access to information and scientific literature on the environmental effects of offshore wind developments
Hydroelectricity and Hydropower
YouTube Video: Energy 101: Hydropower
Hydroelectricity is electricity produced from hydropower (see later below). In 2015 hydropower generated 16.6% of the world's total electricity and 70% of all renewable electricity, and was expected to increase about 3.1% each year for the next 25 years.
Hydropower is produced in 150 countries, with the Asia-Pacific region generating 33 percent of global hydropower in 2013. China is the largest hydroelectricity producer, with 920 TWh of production in 2013, representing 16.9 percent of domestic electricity use.
The cost of hydroelectricity is relatively low, making it a competitive source of renewable electricity. The hydro station consumes no water, unlike coal or gas plants. The average cost of electricity from a hydro station larger than 10 megawatts is 3 to 5 U.S. cents per kilowatt-hour.
With a dam and reservoir it is also a flexible source of electricity since the amount produced by the station can be changed up or down very quickly to adapt to changing energy demands. Once a hydroelectric complex is constructed, the project produces no direct waste, and has a considerably lower output level of greenhouse gases than fossil fuel powered energy plants.
Click on any of the following blue hyperlinks for more about Hydroelectricity:
Hydropower or water power is power derived from the energy of falling water or fast running water, which may be harnessed for useful purposes.
Since ancient times, hydropower from many kinds of watermills has been used as a renewable energy source for irrigation and the operation of various mechanical devices, such as gristmills, sawmills, textile mills, trip hammers, dock cranes, domestic lifts, and ore mills.
A trompe, which produces compressed air from falling water, is sometimes used to power other machinery at a distance.
In the late 19th century, hydropower became a source for generating electricity. Cragside in Northumberland was the first house powered by hydroelectricity in 1878 and the first commercial hydroelectric power plant was built at Niagara Falls in 1879. In 1881, street lamps in the city of Niagara Falls were powered by hydropower.
Since the early 20th century, the term has been used almost exclusively in conjunction with the modern development of hydroelectric power. International institutions such as the World Bank view hydropower as a means for economic development without adding substantial amounts of carbon to the atmosphere, but dams can have significant negative social and environmental impacts.
Click on any of the following blue hyperlinks for more about Hydropower:
Hydropower is produced in 150 countries, with the Asia-Pacific region generating 33 percent of global hydropower in 2013. China is the largest hydroelectricity producer, with 920 TWh of production in 2013, representing 16.9 percent of domestic electricity use.
The cost of hydroelectricity is relatively low, making it a competitive source of renewable electricity. The hydro station consumes no water, unlike coal or gas plants. The average cost of electricity from a hydro station larger than 10 megawatts is 3 to 5 U.S. cents per kilowatt-hour.
With a dam and reservoir it is also a flexible source of electricity since the amount produced by the station can be changed up or down very quickly to adapt to changing energy demands. Once a hydroelectric complex is constructed, the project produces no direct waste, and has a considerably lower output level of greenhouse gases than fossil fuel powered energy plants.
Click on any of the following blue hyperlinks for more about Hydroelectricity:
- History
- Future potential
- Generating methods
- Sizes, types and capacities of hydroelectric facilities
- Properties
- World hydroelectric capacity
- Major projects under construction
- See also:
- Hydraulic engineering
- International Rivers
- List of energy storage projects
- List of hydroelectric power station failures
- List of hydroelectric power stations
- List of largest hydroelectric power stations in the United States
- List of largest power stations in the world
- Xcel Energy Cabin Creek Hydroelectric Plant Fire
- Renewable energy by country
- International Hydropower Association
- National Hydropower Association, USA
- Hydropower Reform Coalition
- IEC TC 4: Hydraulic turbines (International Electrotechnical Commission - Technical Committee 4) IEC TC 4 portal with access to scope, documents and TC 4 website
Hydropower or water power is power derived from the energy of falling water or fast running water, which may be harnessed for useful purposes.
Since ancient times, hydropower from many kinds of watermills has been used as a renewable energy source for irrigation and the operation of various mechanical devices, such as gristmills, sawmills, textile mills, trip hammers, dock cranes, domestic lifts, and ore mills.
A trompe, which produces compressed air from falling water, is sometimes used to power other machinery at a distance.
In the late 19th century, hydropower became a source for generating electricity. Cragside in Northumberland was the first house powered by hydroelectricity in 1878 and the first commercial hydroelectric power plant was built at Niagara Falls in 1879. In 1881, street lamps in the city of Niagara Falls were powered by hydropower.
Since the early 20th century, the term has been used almost exclusively in conjunction with the modern development of hydroelectric power. International institutions such as the World Bank view hydropower as a means for economic development without adding substantial amounts of carbon to the atmosphere, but dams can have significant negative social and environmental impacts.
Click on any of the following blue hyperlinks for more about Hydropower:
- History
- Hydropower types
- Calculating the amount of available power
- Sustainability
- See also:
- Deep water source cooling
- Hydraulic efficiency
- Hydraulic ram
- International Hydropower Association
- Low head hydro power
- Marine current power
- Marine energy
- Ocean thermal energy conversion
- Osmotic power
- Tidal power
- Wave power
- International Hydropower Association
- International Centre for Hydropower (ICH) hydropower portal with links to numerous organizations related to hydropower worldwide
- IEC TC 4: Hydraulic turbines (International Electrotechnical Commission - Technical Committee 4) IEC TC 4 portal with access to scope, documents and TC 4 website
- Micro-hydro power, Adam Harvey, 2004, Intermediate Technology Development Group. Retrieved 1 January 2005
- Microhydropower Systems, US Department of Energy, Energy Efficiency and Renewable Energy, 2005
- Itaipu Website www.itaipu.gov.br/en
Bioenergy and Biomass Pictured: Click here for TOP 10 COUNTRIES INTERESTED IN BIOMASS ENERGY
Bioenergy is renewable energy made available from materials derived from biological sources. Biomass (see below) is any organic material which has stored sunlight in the form of chemical energy. As a fuel it may include wood, wood waste, straw, manure, sugarcane, and many other by-products from a variety of agricultural processes. By 2010, there was 35 GW (47,000,000 hp) of globally installed bioenergy capacity for electricity generation, of which 7 GW (9,400,000 hp) was in the United States.
In its most narrow sense it is a synonym to biofuel, which is fuel derived from biological sources. In its broader sense it includes biomass (see below), the biological material used as a biofuel, as well as the social, economic, scientific and technical fields associated with using biological sources for energy. This is a common misconception, as bioenergy is the energy extracted from the biomass, as the biomass is the fuel and the bioenergy is the energy contained in the fue.
There is a slight tendency for the word bioenergy to be favored in Europe compared with biofuel in America.
Click on any of the following blue hyperlinks for more about Bioenergy:
Biomass is an industry term for getting energy by burning wood, and other organic matter. Burning biomass releases carbon emissions, but has been classed as a renewable energy source in the EU and UN legal frameworks, because plant stocks can be replaced with new growth.
Biomass has become popular among coal power stations, which switch from coal to biomass in order to convert to renewable energy generation without wasting existing generating plant and infrastructure. Biomass most often refers to plants or plant-based materials that are not used for food or feed, and are specifically called lignocellulosic biomass.
As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical. Some chemical constituents of plant biomass include lignins, cellulose, and hemicellulose.
Click on any of the following blue hyperlinks for more about Biomass:
In its most narrow sense it is a synonym to biofuel, which is fuel derived from biological sources. In its broader sense it includes biomass (see below), the biological material used as a biofuel, as well as the social, economic, scientific and technical fields associated with using biological sources for energy. This is a common misconception, as bioenergy is the energy extracted from the biomass, as the biomass is the fuel and the bioenergy is the energy contained in the fue.
There is a slight tendency for the word bioenergy to be favored in Europe compared with biofuel in America.
Click on any of the following blue hyperlinks for more about Bioenergy:
- Solid biomass
- Sewage biomass
- Electricity generation from biomass
- Electricity from electrogenic micro-organisms
- Environmental impact
- See also:
- Biochar
- Bioenergy in China
- Biofuel
- Biogas
- Jean Pain
- Pellet fuel
- Biomass energy with carbon capture and storage
- European Biomass Association
- Video: Where does bioenergy come from? By László Máthé, Bioenergy Coordinator WWF International
- BioenergyWiki (BioenergyWiki was developed in cooperation with the CURES network and an international Steering Committee. It is currently being hosted by the National Wildlife Federation with support from the Rockefeller Brothers Fund, the Biomass Coordinating Council of the American Council on Renewable Energy (ACORE), the Heinrich Boell Foundation, Dynamotive Energy Systems Corporation, Renew the Earth, and the Worldwatch Institute.)
- Bioenergy (US Department of Energys Office of Energy Efficiency and Renewable Energy).
- Global Change Biology Bioenergy (GCB Bioenergy is a journal promoting understanding of the interface between biological sciences and the production of fuels directly from plants, algae and waste.)
Biomass is an industry term for getting energy by burning wood, and other organic matter. Burning biomass releases carbon emissions, but has been classed as a renewable energy source in the EU and UN legal frameworks, because plant stocks can be replaced with new growth.
Biomass has become popular among coal power stations, which switch from coal to biomass in order to convert to renewable energy generation without wasting existing generating plant and infrastructure. Biomass most often refers to plants or plant-based materials that are not used for food or feed, and are specifically called lignocellulosic biomass.
As an energy source, biomass can either be used directly via combustion to produce heat, or indirectly after converting it to various forms of biofuel. Conversion of biomass to biofuel can be achieved by different methods which are broadly classified into: thermal, chemical, and biochemical. Some chemical constituents of plant biomass include lignins, cellulose, and hemicellulose.
Click on any of the following blue hyperlinks for more about Biomass:
- Sources of Biomass
- Comparison of total plant biomass yields (dry basis)
- Biomass conversion
- Environmental damage
- Supply chain issues
- See also:
- Biofact (biology)
- Biomass (ecology)
- Biomass gasification
- Biomass heating systems
- Biomass to liquid
- Bioproduct
- Biorefinery
- Carbon
- European Biomass Association
- Carbon footprint
- Cow dung
- Energy crop
- Energy forestry
- Firewood
- Microgeneration
- Microbial electrolysis cell generates hydrogen or methane
- Pellet fuel
- Thermal mass
- Wood fuel (a traditional biomass fuel)
- Woodchips
Solar Energy
YouTube Video: How do solar panels work? - Richard Komp TEDEd
Pictured: (L) How is solar energy generated from the sun? (R) Corning To Buy Power From New Duke Solar Farm
Solar energy is radiant light and heat from the Sun that is harnessed using a range of ever-evolving technologies such as the following:
It is an important source of renewable energy and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.
The large magnitude of solar energy available makes it a highly appealing source of electricity. The United Nations Development Program in its 2000 World Energy Assessment found that the annual potential of solar energy was 1,575–49,837 exajoules (EJ). This is several times larger than the total world energy consumption, which was 559.8 EJ in 2012.
In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".
Click on any of the following blue hyperlinks for more about Solar Energy:
- solar heating,
- photovoltaics,
- solar thermal energy,
- solar architecture,
- molten salt power plants
- and artificial photosynthesis.
It is an important source of renewable energy and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.
The large magnitude of solar energy available makes it a highly appealing source of electricity. The United Nations Development Program in its 2000 World Energy Assessment found that the annual potential of solar energy was 1,575–49,837 exajoules (EJ). This is several times larger than the total world energy consumption, which was 559.8 EJ in 2012.
In 2011, the International Energy Agency said that "the development of affordable, inexhaustible and clean solar energy technologies will have huge longer-term benefits. It will increase countries’ energy security through reliance on an indigenous, inexhaustible and mostly import-independent resource, enhance sustainability, reduce pollution, lower the costs of mitigating global warming, and keep fossil fuel prices lower than otherwise. These advantages are global. Hence the additional costs of the incentives for early deployment should be considered learning investments; they must be wisely spent and need to be widely shared".
Click on any of the following blue hyperlinks for more about Solar Energy:
- Potential
- Thermal energy
- Electricity production
- Architecture and urban planning
- Agriculture and horticulture
- Transport
- Fuel production
- Energy storage methods
- Development, deployment and economics
- ISO standards
- See also:
- Airmass
- Artificial photosynthesis
- Community solar farm
- Copper in renewable energy
- Desertec
- Global dimming
- Greasestock
- Green electricity
- Heliostat
- List of conservation topics
- List of renewable energy organizations
- List of solar energy topics
- Photovoltaic system
- Renewable heat
- Renewable energy by country
- Soil solarization
- Solar Decathlon
- Solar easement
- Solar energy use in rural Africa
- Solar updraft tower
- Solar power satellite
- Solar tracker
- SolarEdge
- Timeline of solar cells
- "How do Photovoltaics Work?". NASA.
- Solar Energy Back in the Day – slideshow by Life magazine
- U.S. Solar Farm Map (1 MW or Higher)
- Online Resources Database on Solar in Developing Countries
- Online resources and news from the nonprofit American Solar Energy Society
- "Journal article traces dramatic advances in solar efficiency". SPIE Newsroom. Retrieved 4 November 2015.
The Negative Environmental Impact of the Coal Industry as an Energy Resource including the Kingston Fossil Plant coal fly ash slurry spill (12/22/2008) Pictured below: Kingston Fossil Plant Coal Ash Slurry Spill (12/22/2008 ) Courtesy of Tennessee Valley Authority (TVA):
- TOP: Aerial photograph of site taken the day after the event
- BOTTOM: A 25-foot (7.6 m) wall of ash approximately 1 mile (1.6 km) from the retention pond
[Note that this topic has been included under the "Energy" web page to cite environmental concerns for continued use of coal, primarily as a source of energy for power plants. In its place, nuclear power plants and other sustainable energy sources are needed! Coal is both dirty and highly risky for coal miners: click on ->"2010 Chilean Mine Disaster" as an example]
The environmental impact of the coal industry includes issues such as land use, waste management, water and air pollution, caused by the coal mining, processing and the use of its products.
In addition to atmospheric pollution, coal burning produces hundreds of millions of tons of solid waste products annually, including fly ash, bottom ash, and flue-gas desulfurization sludge, that contain mercury, uranium, thorium, arsenic, and other heavy metals.
There are severe health effects caused by burning coal. According to a report by the World Health Organization in 2008, coal particulates pollution are estimated to shorten approximately 1,000,000 lives annually worldwide.
A 2004 study commissioned by environmental groups, but contested by the US EPA, concluded that coal burning costs 24,000 lives a year in the United States.
More recently, an academic study estimated that the premature deaths from coal related air pollution was about 52,000 . When compared to electricity produced from natural gas via hydraulic fracturing, coal electricity is 10-100 times more toxic, largely due to the amount of particulate matter emitted during combustion. For example, when coal is compared to solar photovoltaic generation, the latter could save 51,999 American lives per year if solar were to replace coal generation in the U.S.
In addition, the list of historical coal mining disasters is a long one, although work related coal deaths has declined substantially as safety measures have been enacted and underground mining has given up market share to surface mining.
Underground mining hazards include suffocation, gas poisoning, roof collapse and gas explosions. Open cut hazards are principally mine wall failures and vehicle collisions. In the United States, an average of 26 coal miners per year died in the decade 2005–2014.
Click on any of the following blue hyperlinks for more about the Environmental Impact of the Coal Industry:
The TVA Kingston Fossil Plant coal fly ash slurry spill occurred just before 1 a.m. on Monday December 22, 2008, when an ash dike ruptured at an 84-acre (0.34 km2) solid waste containment area at the Tennessee Valley Authority's Kingston Fossil Plant in Roane County, Tennessee. 1.1 billion US gallons (4,200,000 m3) of coal fly ash slurry was released.
The coal-fired power plant, located across the Clinch River from the city of Kingston, uses ponds to dewater the fly ash, a byproduct of coal combustion, which is then stored in wet form in dredge cells.
The slurry (a mixture of fly ash and water) traveled across the Emory River and its Swan Pond embayment, on to the opposite shore, covering up to 300 acres (1.2 km2) of the surrounding land, damaging homes and flowing up and down stream in nearby waterways such as the Emory River and Clinch River (tributaries of the Tennessee River). It was the largest fly ash release in United States history.
Click on any of the following blue hyperlinks for more about the TV Kingston Fossil Plant coal ash slurry spill:
The environmental impact of the coal industry includes issues such as land use, waste management, water and air pollution, caused by the coal mining, processing and the use of its products.
In addition to atmospheric pollution, coal burning produces hundreds of millions of tons of solid waste products annually, including fly ash, bottom ash, and flue-gas desulfurization sludge, that contain mercury, uranium, thorium, arsenic, and other heavy metals.
There are severe health effects caused by burning coal. According to a report by the World Health Organization in 2008, coal particulates pollution are estimated to shorten approximately 1,000,000 lives annually worldwide.
A 2004 study commissioned by environmental groups, but contested by the US EPA, concluded that coal burning costs 24,000 lives a year in the United States.
More recently, an academic study estimated that the premature deaths from coal related air pollution was about 52,000 . When compared to electricity produced from natural gas via hydraulic fracturing, coal electricity is 10-100 times more toxic, largely due to the amount of particulate matter emitted during combustion. For example, when coal is compared to solar photovoltaic generation, the latter could save 51,999 American lives per year if solar were to replace coal generation in the U.S.
In addition, the list of historical coal mining disasters is a long one, although work related coal deaths has declined substantially as safety measures have been enacted and underground mining has given up market share to surface mining.
Underground mining hazards include suffocation, gas poisoning, roof collapse and gas explosions. Open cut hazards are principally mine wall failures and vehicle collisions. In the United States, an average of 26 coal miners per year died in the decade 2005–2014.
Click on any of the following blue hyperlinks for more about the Environmental Impact of the Coal Industry:
- Land use management
- Water management
- Air pollution
- Greenhouse gas emissions
- Radiation exposure
- Dangers to miners
- See also:
- Clean coal technology
- Fossil fuel phase-out
- Fossil fuel power station
- Greenhouse gases
- Health effects of atmospheric particulate matter
- Ocean acidification
- EPA fact sheet: Cross-State Air Pollution Rule (CSAPR)
- Bill Bigelow, "Got Coal? Teaching About the Most Dangerous Rock in America", lesson plan for middle school and high school students, Zinn Education Project/Rethinking Schools.
- Environmental impacts of coal power: air pollution Union of Concerned Scientists
- Air pollution from coal-fired power plants Sourcewatch
- Environmental impacts of coal Sourcewatch
- Map of Death and Disease from U.S. Power Plants Clean Air Task Force
- Emissions Of Hazardous Air Pollutants From Coal-Fired Power Plants American Lung Assn.
The TVA Kingston Fossil Plant coal fly ash slurry spill occurred just before 1 a.m. on Monday December 22, 2008, when an ash dike ruptured at an 84-acre (0.34 km2) solid waste containment area at the Tennessee Valley Authority's Kingston Fossil Plant in Roane County, Tennessee. 1.1 billion US gallons (4,200,000 m3) of coal fly ash slurry was released.
The coal-fired power plant, located across the Clinch River from the city of Kingston, uses ponds to dewater the fly ash, a byproduct of coal combustion, which is then stored in wet form in dredge cells.
The slurry (a mixture of fly ash and water) traveled across the Emory River and its Swan Pond embayment, on to the opposite shore, covering up to 300 acres (1.2 km2) of the surrounding land, damaging homes and flowing up and down stream in nearby waterways such as the Emory River and Clinch River (tributaries of the Tennessee River). It was the largest fly ash release in United States history.
Click on any of the following blue hyperlinks for more about the TV Kingston Fossil Plant coal ash slurry spill:
United States Department of Energy
YouTube Video about the U.S. Department of Energy: Science for the People
Pictured below:
TOP: Chart a course to knowledge with symmetry’s map of all 17 US Department of Energy al laboratories;
BOTTOM: U.S. Department of Energy Clean Cities Program
The United States Department of Energy (DOE) is a cabinet-level department of the United States Government concerned with the United States' policies regarding energy and safety in handling nuclear material. Its responsibilities include:
The DOE also directs research in genomics; the Human Genome Project originated in a DOE initiative.
DOE sponsors more research in the physical sciences than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories.
The agency is administered by the United States Secretary of Energy, and its headquarters are located in Southwest Washington, D.C., on Independence Avenue in the James V. Forrestal Building, named for James Forrestal, as well as in Germantown, Maryland.
Former Governor of Texas Rick Perry is the current Secretary of Energy. He was confirmed by a 62 to 37 vote in the United States Senate on March 2, 2017.
Click on any of the following blue hyperlinks for more about the United States Department of Energy:
- the nation's nuclear weapons program,
- nuclear reactor production for the United States Navy,
- energy conservation,
- energy-related research,
- radioactive waste disposal,
- and domestic energy production.
The DOE also directs research in genomics; the Human Genome Project originated in a DOE initiative.
DOE sponsors more research in the physical sciences than any other U.S. federal agency, the majority of which is conducted through its system of National Laboratories.
The agency is administered by the United States Secretary of Energy, and its headquarters are located in Southwest Washington, D.C., on Independence Avenue in the James V. Forrestal Building, named for James Forrestal, as well as in Germantown, Maryland.
Former Governor of Texas Rick Perry is the current Secretary of Energy. He was confirmed by a 62 to 37 vote in the United States Senate on March 2, 2017.
Click on any of the following blue hyperlinks for more about the United States Department of Energy:
- History
- Organization
- Structure and positions
- Energy
- Related legislation
- Budget
- Programs and contracts
- List of Secretaries of Energy
- See also:
Energy from Biogas and Biofuel Pictured below: Anaerobic Digestion that enables the biofuel and biogas plant process.
Biogas is the mixture of gases produced by the breakdown of organic matter in the absence of oxygen, usually consisting of certain quantities of methane and other constituents. Biogas can be produced from raw materials such as:
Biogas is a renewable energy source. In India, it is also known as "Gobar Gas".
Biogas is produced by anaerobic digestion with methanogen or anaerobic organisms, which digest material inside a closed system, or fermentation of biodegradable materials. This closed system is called an anaerobic digester, biodigester or a bioreactor.
Biogas is primarily methane (CH4) and carbon dioxide (CO2) and may have small amounts of hydrogen sulfide (H2S), moisture and siloxanes.
The gases methane, hydrogen, and carbon monoxide (CO) can be combusted or oxidized with oxygen. This energy release allows biogas to be used as a fuel; it can be used for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat.
Biogas can be compressed, the same way as natural gas is compressed to CNG, and used to power motor vehicles. In the United Kingdom, for example, biogas is estimated to have the potential to replace around 17% of vehicle fuel. It qualifies for renewable energy subsidies in some parts of the world. Biogas can be cleaned and upgraded to natural gas standards, when it becomes bio-methane.
Biogas is considered to be a renewable resource because its production-and-use cycle is continuous, and it generates no net carbon dioxide. As the organic material grows, it is converted and used. It then regrows in a continually repeating cycle. From a carbon perspective, as much carbon dioxide is absorbed from the atmosphere in the growth of the primary bio-resource as is released, when the material is ultimately converted to energy.
Click on any of the following blue hyperlinks for more about biogas:
A biofuel is a fuel that is produced through contemporary processes from biomass, rather than a fuel produced by the very slow geological processes involved in the formation of fossil fuels, such as oil. Since biomass technically can be used as a fuel directly (e.g. wood logs), some people use the terms biomass and biofuel interchangeably.
More often than not however, the word biomass simply denotes the biological raw material the fuel is made of, or some form of thermally/chemically altered solid end product, like torrefied pellets or briquettes. The word biofuel is usually reserved for liquid or gaseous fuels, used for transportation.
The EIA (U.S. Energy Information Administration) follow this naming practice. If the biomass used in the production of biofuel can regrow quickly, the fuel is generally considered to be a form of renewable energy.
Biofuels can be produced from plants (i.e. energy crops), or from agricultural, commercial, domestic, and/or industrial wastes (if the waste has a biological origin). Renewable biofuels generally involve contemporary carbon fixation, such as those that occur in plants or microalgae through the process of photosynthesis.
Some argue that biofuel can be carbon-neutral because all biomass crops sequester carbon to a certain extent – basically all crops move CO2 from above-ground circulation to below-ground storage in the roots and the surrounding soil. For instance, McCalmont et al. found below-ground carbon accumulation ranging from 0.42 to 3.8 tonnes per hectare per year for soils below Miscanthus x giganteus energy crops, with a mean accumulation rate of 1.84 tonne (0.74 tonnes per acre per year), or 20% of total harvested carbon per year.
However, the simple proposal that biofuel is carbon-neutral almost by definition has been superseded by the more nuanced proposal that for a particular biofuel project to be carbon neutral, the total carbon sequestered by the energy crop's root system must compensate for all the above-ground emissions (related to this particular biofuel project).
This includes any emissions caused by direct or indirect land use change. Many first generation biofuel projects are not carbon neutral given these demands. Some have even higher total GHG emissions than some fossil based alternatives.
Some are carbon neutral or even negative, though, especially perennial crops. The amount of carbon sequestrated and the amount of GHG (greenhouse gases) emitted will determine if the total GHG life cycle cost of a biofuel project is positive, neutral or negative. A carbon negative life cycle is possible if the total below-ground carbon accumulation more than compensates for the total life-cycle GHG emissions above ground. In other words, to achieve carbon neutrality yields should be high and emissions should be low.
High-yielding energy crops are thus prime candidates for carbon neutrality. The graphic on the right displays two CO2 negative Miscanthus x giganteus production pathways, represented in gram CO2-equivalents per megajoule. The yellow diamonds represent mean values. Further, successful sequestration is dependent on planting sites, as the best soils for sequestration are those that are currently low in carbon. The varied results displayed in the graph highlights this fact.
For the UK, successful sequestration is expected for arable land over most of England and Wales, with unsuccessful sequestration expected in parts of Scotland, due to already carbon rich soils (existing woodland) plus lower yields. Soils already rich in carbon includes peatland and mature forest. Grassland can also be carbon rich, however Milner et al. argues that the most successful carbon sequestration in the UK takes place below improved grasslands. The bottom graphic displays the estimated yield necessary to compensate for related lifecycle GHG-emissions. The higher the yield, the more likely CO2 negativity becomes.
The two most common types of biofuel are bioethanol and biodiesel.
In 2018, worldwide biofuel production reached 152 billion liters (40 billion gallons US), up 7% from 2017, and biofuels provided 3% of the world's fuels for road transport.
The International Energy Agency want biofuels to meet more than a quarter of world demand for transportation fuels by 2050, in order to reduce dependency on petroleum. However, the production and consumption of biofuels are not on track to meet the IEA's sustainable development scenario.
From 2020 to 2030 global biofuel output has to increase by 10% each year to reach IEA's goal. Only 3% growth annually is expected.
Here are some various social, economic, environmental and technical issues relating to biofuels production and use, which have been debated in the popular media and scientific journals.
Click on any of the following blue hyperlinks for more about biofuels:
Biogas is a renewable energy source. In India, it is also known as "Gobar Gas".
Biogas is produced by anaerobic digestion with methanogen or anaerobic organisms, which digest material inside a closed system, or fermentation of biodegradable materials. This closed system is called an anaerobic digester, biodigester or a bioreactor.
Biogas is primarily methane (CH4) and carbon dioxide (CO2) and may have small amounts of hydrogen sulfide (H2S), moisture and siloxanes.
The gases methane, hydrogen, and carbon monoxide (CO) can be combusted or oxidized with oxygen. This energy release allows biogas to be used as a fuel; it can be used for any heating purpose, such as cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat.
Biogas can be compressed, the same way as natural gas is compressed to CNG, and used to power motor vehicles. In the United Kingdom, for example, biogas is estimated to have the potential to replace around 17% of vehicle fuel. It qualifies for renewable energy subsidies in some parts of the world. Biogas can be cleaned and upgraded to natural gas standards, when it becomes bio-methane.
Biogas is considered to be a renewable resource because its production-and-use cycle is continuous, and it generates no net carbon dioxide. As the organic material grows, it is converted and used. It then regrows in a continually repeating cycle. From a carbon perspective, as much carbon dioxide is absorbed from the atmosphere in the growth of the primary bio-resource as is released, when the material is ultimately converted to energy.
Click on any of the following blue hyperlinks for more about biogas:
- Production
- Landfill gas
- Composition
- Benefits of manure derived biogas
- Applications
- Legislation
- Global developments
- Associations
- Society and culture
- See also:
- Anaerobic digestion
- Biochemical Oxygen Demand
- Biodegradability
- Bioenergy
- Biofuel
- Biohydrogen
- Landfill gas monitoring
- MSW/LFG (municipal solid waste and landfill gas)
- Natural gas
- Renewable energy
- Renewable natural gas
- Relative cost of electricity generated by different sources
- Tables of European biogas utilisation
- Thermal hydrolysis
- Waste management
- European Biomass Association
- European Biogas Association
- Biogas Portal on Energypedia
- American Biogas Council
- An Introduction to Biogas, University of Adelaide
- Micro Biogas Production in Kenya
- Indian Biogas Association
- Listing of small scale domestic Biogas kits available by country
- Biogas flaring, cleaning, dehumidification equipment
A biofuel is a fuel that is produced through contemporary processes from biomass, rather than a fuel produced by the very slow geological processes involved in the formation of fossil fuels, such as oil. Since biomass technically can be used as a fuel directly (e.g. wood logs), some people use the terms biomass and biofuel interchangeably.
More often than not however, the word biomass simply denotes the biological raw material the fuel is made of, or some form of thermally/chemically altered solid end product, like torrefied pellets or briquettes. The word biofuel is usually reserved for liquid or gaseous fuels, used for transportation.
The EIA (U.S. Energy Information Administration) follow this naming practice. If the biomass used in the production of biofuel can regrow quickly, the fuel is generally considered to be a form of renewable energy.
Biofuels can be produced from plants (i.e. energy crops), or from agricultural, commercial, domestic, and/or industrial wastes (if the waste has a biological origin). Renewable biofuels generally involve contemporary carbon fixation, such as those that occur in plants or microalgae through the process of photosynthesis.
Some argue that biofuel can be carbon-neutral because all biomass crops sequester carbon to a certain extent – basically all crops move CO2 from above-ground circulation to below-ground storage in the roots and the surrounding soil. For instance, McCalmont et al. found below-ground carbon accumulation ranging from 0.42 to 3.8 tonnes per hectare per year for soils below Miscanthus x giganteus energy crops, with a mean accumulation rate of 1.84 tonne (0.74 tonnes per acre per year), or 20% of total harvested carbon per year.
However, the simple proposal that biofuel is carbon-neutral almost by definition has been superseded by the more nuanced proposal that for a particular biofuel project to be carbon neutral, the total carbon sequestered by the energy crop's root system must compensate for all the above-ground emissions (related to this particular biofuel project).
This includes any emissions caused by direct or indirect land use change. Many first generation biofuel projects are not carbon neutral given these demands. Some have even higher total GHG emissions than some fossil based alternatives.
Some are carbon neutral or even negative, though, especially perennial crops. The amount of carbon sequestrated and the amount of GHG (greenhouse gases) emitted will determine if the total GHG life cycle cost of a biofuel project is positive, neutral or negative. A carbon negative life cycle is possible if the total below-ground carbon accumulation more than compensates for the total life-cycle GHG emissions above ground. In other words, to achieve carbon neutrality yields should be high and emissions should be low.
High-yielding energy crops are thus prime candidates for carbon neutrality. The graphic on the right displays two CO2 negative Miscanthus x giganteus production pathways, represented in gram CO2-equivalents per megajoule. The yellow diamonds represent mean values. Further, successful sequestration is dependent on planting sites, as the best soils for sequestration are those that are currently low in carbon. The varied results displayed in the graph highlights this fact.
For the UK, successful sequestration is expected for arable land over most of England and Wales, with unsuccessful sequestration expected in parts of Scotland, due to already carbon rich soils (existing woodland) plus lower yields. Soils already rich in carbon includes peatland and mature forest. Grassland can also be carbon rich, however Milner et al. argues that the most successful carbon sequestration in the UK takes place below improved grasslands. The bottom graphic displays the estimated yield necessary to compensate for related lifecycle GHG-emissions. The higher the yield, the more likely CO2 negativity becomes.
The two most common types of biofuel are bioethanol and biodiesel.
- Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources, such as trees and grasses, is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form (E100), but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil.
- Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe. It can be used as a fuel for vehicles in its pure form (B100), but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles.
In 2018, worldwide biofuel production reached 152 billion liters (40 billion gallons US), up 7% from 2017, and biofuels provided 3% of the world's fuels for road transport.
The International Energy Agency want biofuels to meet more than a quarter of world demand for transportation fuels by 2050, in order to reduce dependency on petroleum. However, the production and consumption of biofuels are not on track to meet the IEA's sustainable development scenario.
From 2020 to 2030 global biofuel output has to increase by 10% each year to reach IEA's goal. Only 3% growth annually is expected.
Here are some various social, economic, environmental and technical issues relating to biofuels production and use, which have been debated in the popular media and scientific journals.
Click on any of the following blue hyperlinks for more about biofuels:
- Generations
- Types
- Biogas: See first topic above
- Syngas
- Ethanol
- Other bioalcohols
- Biodiesel
- Green diesel
- Straight vegetable oil
- Bioethers
- By compatibility with existing infrastructure
- By region
- Air pollution
- Debates regarding the production and use of biofuel
- Current research
- See also:
- Aviation biofuel
- Bioenergy Europe
- BioEthanol for Sustainable Transport
- Biofuels Center of North Carolina
- Biofuelwatch
- Biogas powerplant
- Clean Cities
- Food vs. fuel
- Renewable energy by country
- Residue-to-product ratio
- Ecological sanitation
- International Renewable Energy Agency
- List of biofuel companies and researchers
- List of emerging technologies
- List of vegetable oils used for biofuel
- Sustainable aviation fuel
- Sustainable transport
- Table of biofuel crop yields
- Alternative Fueling Station Locator (EERE)
- Towards Sustainable Production and Use of Resources: Assessing Biofuels by the United Nations Environment Programme, October 2009.
- Biofuels guidance for businesses, including permits and licences required on NetRegs.gov.uk
- How Much Water Does It Take to Make Electricity?—Natural gas requires the least water to produce energy, some biofuels the most, according to a new study.
- International Conference on Biofuels Standards – European Union Biofuels Standardization
- Biofuels from Biomass: Technology and Policy Considerations Thorough overview from MIT
- The Guardian news on biofuels
- The US DOE Clean Cities Program – links to the 87 US Clean Cities coalitions, as of 2004.
- Biofuels Factsheet by the University of Michigan's Center for Sustainable Systems
- Learn Biofuels - Educational Resource for Students
Wood Burning as Household Fuel
- YouTube Video about Heating Your House Efficiently with a Wood Burning Fireplace or Stove
- YouTube Video: Tips on Increasing the Efficiency of Wood Burning Stoves - Off Grid Living
- YouTube Video: 25 wood heating tips From cutting firewood to stove tips
Wood fuel (or fuelwood) is a fuel, such as firewood, charcoal, chips, sheets, pellets, and sawdust. The particular form used depends upon factors such as source, quantity, quality and application.
In many areas, wood is the most easily available form of fuel, requiring no tools in the case of picking up dead wood, or few tools, although as in any industry, specialized tools, such as skidders and hydraulic wood splitters, have been developed to mechanize production.
Sawmill waste and construction industry by-products also include various forms of lumber tailings. The discovery of how to make fire for the purpose of burning wood is regarded as one of humanity's most important advances. The use of wood as a fuel source for heating is much older than civilization and is assumed to have been used by Neanderthals.
Today, burning of wood is the largest use of energy derived from a solid fuel biomass. Wood fuel can be used for cooking and heating, and occasionally for fueling steam engines and steam turbines that generate electricity. Wood may be used indoors in a furnace, stove, or fireplace, or outdoors in furnace, campfire, or bonfire.
Historical Development.
Further information: Firewood
Wood has been used as fuel for millennia. Historically, it was limited in use only by the distribution of technology required to make a spark. Heat derived from wood is still common throughout much of the world. Early examples included a fire constructed inside a tent. Fires were constructed on the ground, and a smoke hole in the top of the tent allowed the smoke to escape by convection.
In permanent structures and in caves, hearths were constructed or established—surfaces of stone or another noncombustible material upon which a fire could be built. Smoke escaped through a smoke hole in the roof.
In contrast to civilizations in relatively arid regions (such as Mesopotamia and Egypt), the Greeks, Romans, Celts, Britons, and Gauls all had access to forests suitable for using as fuel.
Over the centuries there was a partial deforestation of climax forests and the evolution of the remainder to coppice with standards woodland as the primary source of wood fuel.
These woodlands involved a continuous cycle of new stems harvested from old stumps, on rotations between seven and thirty years. One of the earliest printed books on woodland management, in English, was John Evelyn's "Sylva, or a discourse on forest trees" (1664) advising landowners on the proper management of forest estates.
H. L. Edlin, in "Woodland Crafts in Britain", 1949 outlines the extraordinary techniques employed, and range of wood products that have been produced from these managed forests since pre-Roman times. And throughout this time the preferred form of wood fuel was the branches of cut coppice stems bundled into faggots. Larger, bent or deformed stems that were of no other use to the woodland craftsmen were converted to charcoal.
As with most of Europe, these managed woodlands continued to supply their markets right up to the end of World War Two. Since then much of these woodlands have been converted to broadscale agriculture. Total demand for fuel increased considerably with the industrial revolution but most of this increased demand was met by the new fuel source coal, which was more compact and more suited to the larger scale of the new industries.
During the Edo period of Japan, wood was used for many purposes, and the consumption of wood led Japan to develop a forest management policy during that era. Demand for timber resources was on the rise not only for fuel, but also for construction of ships and buildings, and consequently deforestation was widespread. As a result, forest fires occurred, along with floods and soil erosion.
Around 1666, the shōgun made it a policy to reduce logging and increase the planting of trees. This policy decreed that only the shōgun, or a daimyō, could authorize the use of wood. By the 18th century, Japan had developed detailed scientific knowledge about silviculture and plantation forestry.
Fireplaces and stoves:
The development of the chimney and the fireplace allowed for more effective exhaustion of the smoke. Masonry heaters or stoves went a step further by capturing much of the heat of the fire and exhaust in a large thermal mass, becoming much more efficient than a fireplace alone.
The metal stove was a technological development concurrent with the industrial revolution. Stoves were manufactured or constructed pieces of equipment that contained the fire on all sides and provided a means for controlling the draft—the amount of air allowed to reach the fire.
Stoves have been made of a variety of materials. Cast iron is among the more common. Soapstone (talc), tile, and steel have all been used. Metal stoves are often lined with refractory materials such as firebrick, since the hottest part of a woodburning fire will burn away steel over the course of several years' use.
The Franklin stove was developed in the United States by Benjamin Franklin. More a manufactured fireplace than a stove, it had an open front and a heat exchanger in the back that was designed to draw air from the cellar and heat it before releasing it out the sides. The heat exchanger was never a popular feature and was omitted in later versions. So-called "Franklin" stoves today are made in a great variety of styles, though none resembles the original design.
The 1800s became the high point of the cast iron stove. Each local foundry would make their own design, and stoves were built for myriads of purposes—parlour stoves, box stoves, camp stoves, railroad stoves, portable stoves, cooking stoves and so on. Elaborate nickel and chrome edged models took designs to the edge, with cast ornaments, feet and doors.
Wood or coal could be burnt in the stoves and thus they were popular for over one hundred years. The action of the fire, combined with the causticity of the ash, ensured that the stove would eventually disintegrate or crack over time. Thus a steady supply of stoves was needed.
The maintenance of stoves, needing to be blacked, their smokiness, and the need to split wood meant that oil or electric heat found favor.
The airtight stove, originally made of steel, allowed greater control of combustion, being more tightly fitted than other stoves of the day. Airtight stoves became common in the 19th century.
Use of wood heat declined in popularity with the growing availability of other, less labor-intensive fuels. Wood heat was gradually replaced by coal and later by fuel oil, natural gas and propane heating except in rural areas with available forests.
After the 1967 Oil Embargo, many people in the United States used wood as fuel for the first time. The EPA provided information on clean stoves, which burned much more efficiently.
Click on any of the following blue hyperlinks for more about Wood Fuel as a Source of Household Energy:
In many areas, wood is the most easily available form of fuel, requiring no tools in the case of picking up dead wood, or few tools, although as in any industry, specialized tools, such as skidders and hydraulic wood splitters, have been developed to mechanize production.
Sawmill waste and construction industry by-products also include various forms of lumber tailings. The discovery of how to make fire for the purpose of burning wood is regarded as one of humanity's most important advances. The use of wood as a fuel source for heating is much older than civilization and is assumed to have been used by Neanderthals.
Today, burning of wood is the largest use of energy derived from a solid fuel biomass. Wood fuel can be used for cooking and heating, and occasionally for fueling steam engines and steam turbines that generate electricity. Wood may be used indoors in a furnace, stove, or fireplace, or outdoors in furnace, campfire, or bonfire.
Historical Development.
Further information: Firewood
Wood has been used as fuel for millennia. Historically, it was limited in use only by the distribution of technology required to make a spark. Heat derived from wood is still common throughout much of the world. Early examples included a fire constructed inside a tent. Fires were constructed on the ground, and a smoke hole in the top of the tent allowed the smoke to escape by convection.
In permanent structures and in caves, hearths were constructed or established—surfaces of stone or another noncombustible material upon which a fire could be built. Smoke escaped through a smoke hole in the roof.
In contrast to civilizations in relatively arid regions (such as Mesopotamia and Egypt), the Greeks, Romans, Celts, Britons, and Gauls all had access to forests suitable for using as fuel.
Over the centuries there was a partial deforestation of climax forests and the evolution of the remainder to coppice with standards woodland as the primary source of wood fuel.
These woodlands involved a continuous cycle of new stems harvested from old stumps, on rotations between seven and thirty years. One of the earliest printed books on woodland management, in English, was John Evelyn's "Sylva, or a discourse on forest trees" (1664) advising landowners on the proper management of forest estates.
H. L. Edlin, in "Woodland Crafts in Britain", 1949 outlines the extraordinary techniques employed, and range of wood products that have been produced from these managed forests since pre-Roman times. And throughout this time the preferred form of wood fuel was the branches of cut coppice stems bundled into faggots. Larger, bent or deformed stems that were of no other use to the woodland craftsmen were converted to charcoal.
As with most of Europe, these managed woodlands continued to supply their markets right up to the end of World War Two. Since then much of these woodlands have been converted to broadscale agriculture. Total demand for fuel increased considerably with the industrial revolution but most of this increased demand was met by the new fuel source coal, which was more compact and more suited to the larger scale of the new industries.
During the Edo period of Japan, wood was used for many purposes, and the consumption of wood led Japan to develop a forest management policy during that era. Demand for timber resources was on the rise not only for fuel, but also for construction of ships and buildings, and consequently deforestation was widespread. As a result, forest fires occurred, along with floods and soil erosion.
Around 1666, the shōgun made it a policy to reduce logging and increase the planting of trees. This policy decreed that only the shōgun, or a daimyō, could authorize the use of wood. By the 18th century, Japan had developed detailed scientific knowledge about silviculture and plantation forestry.
Fireplaces and stoves:
The development of the chimney and the fireplace allowed for more effective exhaustion of the smoke. Masonry heaters or stoves went a step further by capturing much of the heat of the fire and exhaust in a large thermal mass, becoming much more efficient than a fireplace alone.
The metal stove was a technological development concurrent with the industrial revolution. Stoves were manufactured or constructed pieces of equipment that contained the fire on all sides and provided a means for controlling the draft—the amount of air allowed to reach the fire.
Stoves have been made of a variety of materials. Cast iron is among the more common. Soapstone (talc), tile, and steel have all been used. Metal stoves are often lined with refractory materials such as firebrick, since the hottest part of a woodburning fire will burn away steel over the course of several years' use.
The Franklin stove was developed in the United States by Benjamin Franklin. More a manufactured fireplace than a stove, it had an open front and a heat exchanger in the back that was designed to draw air from the cellar and heat it before releasing it out the sides. The heat exchanger was never a popular feature and was omitted in later versions. So-called "Franklin" stoves today are made in a great variety of styles, though none resembles the original design.
The 1800s became the high point of the cast iron stove. Each local foundry would make their own design, and stoves were built for myriads of purposes—parlour stoves, box stoves, camp stoves, railroad stoves, portable stoves, cooking stoves and so on. Elaborate nickel and chrome edged models took designs to the edge, with cast ornaments, feet and doors.
Wood or coal could be burnt in the stoves and thus they were popular for over one hundred years. The action of the fire, combined with the causticity of the ash, ensured that the stove would eventually disintegrate or crack over time. Thus a steady supply of stoves was needed.
The maintenance of stoves, needing to be blacked, their smokiness, and the need to split wood meant that oil or electric heat found favor.
The airtight stove, originally made of steel, allowed greater control of combustion, being more tightly fitted than other stoves of the day. Airtight stoves became common in the 19th century.
Use of wood heat declined in popularity with the growing availability of other, less labor-intensive fuels. Wood heat was gradually replaced by coal and later by fuel oil, natural gas and propane heating except in rural areas with available forests.
After the 1967 Oil Embargo, many people in the United States used wood as fuel for the first time. The EPA provided information on clean stoves, which burned much more efficiently.
Click on any of the following blue hyperlinks for more about Wood Fuel as a Source of Household Energy:
- 1970s
- 1980s
- Today
- Measurement of firewood
- Energy content
- Environmental impacts
- Potential use in renewable energy technologies
- Usage
- See also:
- Biofuel
- Biomass
- Forestry
- Renewable heat
- Wood gas
- Wood-fired oven
- Woodchips
- Outdoor Wood Furnace
- Firewood Facts
- Himalayas. Unique way to store firewood
- Toxic Woods List: A comprehensive and fully referenced list of potentially toxic woods.
- Burning Issues All about the health effects of biomass burning
Natural Gas and Propane Fuels
- YouTube Video: Shell LNG - tomorrow's fuel today. A new, cleaner, transport fuel | Natural Gas
- YouTube Video: How to Tell If There’s a Gas Leak Inside Your Home
- YouTube Video: Renewable Energy 101 | National Geographic
Natural gas (also called fossil gas) is a naturally occurring hydrocarbon gas mixture consisting primarily of methane, but commonly including varying amounts of other higher alkanes, and sometimes a small percentage of carbon dioxide, nitrogen, hydrogen sulfide, or helium. It is formed when layers of decomposing plant and animal matter are exposed to intense heat and pressure under the surface of the Earth over millions of years.
The energy that the plants originally obtained from the sun is stored in the form of chemical bonds in the gas.
Natural gas is a non-renewable hydrocarbon used as a source of energy for heating, cooking, and electricity generation. It is also used as a fuel for vehicles and as a chemical feedstock in the manufacture of plastics and other commercially important organic chemicals.
Natural gas has a complicated effect on climate change, it itself is a greenhouse gas and it releases carbon dioxide when burned. However natural gas use often supplants coal usage which is far more environmentally damaging, leading to lower net carbon dioxide emissions in countries such as the US.
Natural gas is found in deep underground rock formations or associated with other hydrocarbon reservoirs in coal beds and as methane clathrates. Petroleum is another resource and fossil fuel found close to and with natural gas.
Most natural gas was created over time by two mechanisms: biogenic and thermogenic. Biogenic gas is created by methanogenic organisms in marshes, bogs, landfills, and shallow sediments. Deeper in the earth, at greater temperature and pressure, thermogenic gas is created from buried organic material.
In petroleum production gas is sometimes burned as flare gas. Before natural gas can be used as a fuel, most, but not all, must be processed to remove impurities, including water, to meet the specifications of marketable natural gas.
The by-products of this processing include: ethane, propane, butanes, pentanes, and higher molecular weight hydrocarbons, hydrogen sulfide (which may be converted into pure sulfur), carbon dioxide, water vapor, and sometimes helium and nitrogen.
Natural gas is sometimes informally referred to simply as "gas", especially when compared to other energy sources such as oil or coal. However, it is not to be confused with gasoline, especially in North America, where the term gasoline is often shortened in colloquial usage to gas.
Click on any of the following blue hyperlinks for more about the Use of Natural Gas as a Source of Energy:
Propane is a three-carbon alkane with the molecular formula C3H8. It is a gas at standard temperature and pressure, but compressible to a transportable liquid. A by-product of natural gas processing and petroleum refining, it is commonly used as a fuel.
Propane is one of a group of liquefied petroleum gases (LP gases). The others include butane, propylene, butadiene, butylene, isobutylene, and mixtures thereof.
Click on any of the following blue hyperlinks for more about Propane Gas:
The energy that the plants originally obtained from the sun is stored in the form of chemical bonds in the gas.
Natural gas is a non-renewable hydrocarbon used as a source of energy for heating, cooking, and electricity generation. It is also used as a fuel for vehicles and as a chemical feedstock in the manufacture of plastics and other commercially important organic chemicals.
Natural gas has a complicated effect on climate change, it itself is a greenhouse gas and it releases carbon dioxide when burned. However natural gas use often supplants coal usage which is far more environmentally damaging, leading to lower net carbon dioxide emissions in countries such as the US.
Natural gas is found in deep underground rock formations or associated with other hydrocarbon reservoirs in coal beds and as methane clathrates. Petroleum is another resource and fossil fuel found close to and with natural gas.
Most natural gas was created over time by two mechanisms: biogenic and thermogenic. Biogenic gas is created by methanogenic organisms in marshes, bogs, landfills, and shallow sediments. Deeper in the earth, at greater temperature and pressure, thermogenic gas is created from buried organic material.
In petroleum production gas is sometimes burned as flare gas. Before natural gas can be used as a fuel, most, but not all, must be processed to remove impurities, including water, to meet the specifications of marketable natural gas.
The by-products of this processing include: ethane, propane, butanes, pentanes, and higher molecular weight hydrocarbons, hydrogen sulfide (which may be converted into pure sulfur), carbon dioxide, water vapor, and sometimes helium and nitrogen.
Natural gas is sometimes informally referred to simply as "gas", especially when compared to other energy sources such as oil or coal. However, it is not to be confused with gasoline, especially in North America, where the term gasoline is often shortened in colloquial usage to gas.
Click on any of the following blue hyperlinks for more about the Use of Natural Gas as a Source of Energy:
- History
- Sources
- Processing
- Depletion
- Storage and transport
- Uses
- Environmental effects
- Safety concerns
- Energy content, statistics, and pricing
- Natural gas as an asset class for institutional investors
- Adsorbed natural gas (ANG)
- See also:
- Associated petroleum gas
- Gas oil ratio
- Natural gas by country
- Peak gas
- Power to gas
- Renewable natural gas
- World energy resources and consumption
- The future of Natural Gas MIT study
- A Comparison between Shale Gas in China and Unconventional Fuel Development in the United States: Health, Water and Environmental Risks by Paolo Farah and Riccardo Tremolada. This is a paper presented at the Colloquium on Environmental Scholarship 2013 hosted by Vermont Law School (11 October 2013
Propane is a three-carbon alkane with the molecular formula C3H8. It is a gas at standard temperature and pressure, but compressible to a transportable liquid. A by-product of natural gas processing and petroleum refining, it is commonly used as a fuel.
Propane is one of a group of liquefied petroleum gases (LP gases). The others include butane, propylene, butadiene, butylene, isobutylene, and mixtures thereof.
Click on any of the following blue hyperlinks for more about Propane Gas:
- History
- Sources
- Properties and reactions
- Uses
- Hazards
- Comparison with natural gas
- Retail cost
- See also:
- Blau gas
- National Propane Gas Association
- Canadian Propane Association
- Direct synthesis of propane from synthesis gas (syngas)
- International Chemical Safety Card 0319
- National Propane Gas Association (U.S.)
- NIOSH Pocket Guide to Chemical Hazards
- Propane Education & Research Council (U.S.)
- Propane Properties Explained Descriptive Breakdown of Propane Characteristics
- UKLPG: Propane and Butane in the UK
- US Energy Information Administration
- World LP Gas Association (WLPGA)
Energy policy of the United States
- YouTube Video: The New American Energy Era (EPA 4/14/2019)
- YouTube Video: Solar Energy in the United States: A Decade of Record Growth
- YouTube Video: 5 Amazing RENEWABLE ENERGY Ideas & Solutions For The Future
The energy policy of the United States is determined by federal, state, and local entities in the United States, which address issues of energy production, distribution, and consumption, such as building codes and gas mileage standards. Energy policy may include legislation, international treaties, subsidies and incentives to investment, guidelines for energy conservation, taxation and other public policy techniques.
Several mandates have been proposed over the years, such as gasoline will never exceed $1.00/gallon (Nixon), and the United States will never again import as much oil as it did in 1977 (Carter), but no comprehensive long-term energy policy has been proposed, although there has been concern over this failure.
Three Energy Policy Acts have been passed, in 1992, 2005, 2007, 2008, and 2009 which include many provisions for conservation, such as the Energy Star program, and energy development, with grants and tax incentives for both renewable energy and non-renewable energy.
There is also criticism that federal energy policies since the 1973 oil crisis have been dominated by crisis-mentality thinking, promoting expensive quick fixes and single-shot solutions that ignore market and technology realities. Instead of providing stable rules that support basic research while leaving plenty of scope for American entrepreneurship and innovation, congresses and presidents have repeatedly backed policies which promise solutions that are politically expedient, but whose prospects are doubtful, without adequate consideration of the dollar costs, environmental costs, or national security costs of their actions.
By 2018, the US is on the verge of achieving energy security or self-sufficiency as the total export of coal, natural gas, crude oil and petroleum products are exceeding imports. The US had a trade surplus in the energy sector by 2018. In the second half of 2019, the US is the top producer of oil and gas in the world.
State-specific energy efficiency incentive programs also play a significant role in the overall energy policy of the United States. The United States refused to endorse the Kyoto Protocol, preferring to let the market drive CO2 reductions to mitigate global warming, which will require CO2 emission taxation. The administration of Barack Obama had proposed an aggressive energy policy reform, including the need for a reduction of CO2 emissions, with a cap and trade program, which could help encourage more clean renewable, sustainable energy development.
Thanks to new technologies such as fracking, the United States has in 2014 resumed its former role as the top oil producer in the world. On June 1, 2017, President Trump announced that the U.S. would cease all participation in the 2015 Paris Agreement on climate change mitigation.
Click on any of the following blue hyperlinks for more about the Energy Policy of the United States:
Several mandates have been proposed over the years, such as gasoline will never exceed $1.00/gallon (Nixon), and the United States will never again import as much oil as it did in 1977 (Carter), but no comprehensive long-term energy policy has been proposed, although there has been concern over this failure.
Three Energy Policy Acts have been passed, in 1992, 2005, 2007, 2008, and 2009 which include many provisions for conservation, such as the Energy Star program, and energy development, with grants and tax incentives for both renewable energy and non-renewable energy.
There is also criticism that federal energy policies since the 1973 oil crisis have been dominated by crisis-mentality thinking, promoting expensive quick fixes and single-shot solutions that ignore market and technology realities. Instead of providing stable rules that support basic research while leaving plenty of scope for American entrepreneurship and innovation, congresses and presidents have repeatedly backed policies which promise solutions that are politically expedient, but whose prospects are doubtful, without adequate consideration of the dollar costs, environmental costs, or national security costs of their actions.
By 2018, the US is on the verge of achieving energy security or self-sufficiency as the total export of coal, natural gas, crude oil and petroleum products are exceeding imports. The US had a trade surplus in the energy sector by 2018. In the second half of 2019, the US is the top producer of oil and gas in the world.
State-specific energy efficiency incentive programs also play a significant role in the overall energy policy of the United States. The United States refused to endorse the Kyoto Protocol, preferring to let the market drive CO2 reductions to mitigate global warming, which will require CO2 emission taxation. The administration of Barack Obama had proposed an aggressive energy policy reform, including the need for a reduction of CO2 emissions, with a cap and trade program, which could help encourage more clean renewable, sustainable energy development.
Thanks to new technologies such as fracking, the United States has in 2014 resumed its former role as the top oil producer in the world. On June 1, 2017, President Trump announced that the U.S. would cease all participation in the 2015 Paris Agreement on climate change mitigation.
Click on any of the following blue hyperlinks for more about the Energy Policy of the United States:
- History
- Energy imports
- Energy consumption
- Sources
- Energy efficiency
- Energy budget, initiatives and incentives
- Electricity distribution
- Statistics
- Public opinion
- General legislative policy, legislation and plans
- Greenhouse gas emissions
- See also:
- United States Hydrogen Policy
- 2000s energy crisis
- Carbon tax
- Carter Doctrine
- Climate change policy of the United States
- Economics of new nuclear power plants
- Electricity sector of the United States
- Emissions trading
- Energy and American Society: Thirteen Myths
- Energy in the United States
- Energy law
- Energy policy of the Obama administration
- Energy policy of the Soviet Union
- List of U.S. states by electricity production from renewable sources
- United States House Select Committee on Energy Independence and Global Warming
- United States Secretary of Energy
- World energy consumption
- U.S. Department of energy
- Energy Information Administration
- United States Energy Association (USEA)
- U.S. energy stats
- ISEA – Database of U.S. International Energy Agreements
- Retail sales of electricity and associated revenue by end-use sectors through June 2007 (Energy Information Administration)
Electricity Sector of the United States, including a List of United States electric companies
- YouTube Video: Shell Hydrogen animation
- YouTube Video: Distributed Energy Generation - Future or Fantasy?
- YouTube Video: The Future of Electric Utilities (Brookings Institution)
Click here for a List of United States electric companies.
The electricity sector of the United States includes a large array of stakeholders that provide services through electricity:
for industrial, commercial, public and residential customers. It also includes many public institutions that regulate the sector.
In 1996, there were 3,195 electric utilities in the United States, of which fewer than 1,000 were engaged in power generation. This leaves a large number of mostly smaller utilities engaged only in power distribution. There were also 65 power marketers. Of all utilities, 2,020 were publicly owned (including 10 Federal utilities), 932 were rural electric cooperatives, and 243 were investor-owned utilities.
The electricity transmission network is controlled by Independent System Operators or Regional Transmission Organizations, which are not-for-profit organizations that are obliged to provide indiscriminate access to various suppliers in order to promote competition.
The four above-mentioned market segments of the U.S. electricity sector are regulated by different public institutions with some functional overlaps: The federal government sets general policies through the Department of Energy, environmental policy through the Environmental Protection Agency and consumer protection policy through the Federal Trade Commission.
The safety of nuclear power plants is overseen by the Nuclear Regulatory Commission.
Economic regulation of the distribution segment is a state responsibility, usually carried out through Public Utilities Commissions; the inter-state transmission segment is regulated by the federal government through the Federal Energy Regulatory Commission.
Principal sources of US electricity in 2014 were:
Over the decade 2004—2014, the largest increases in electrical generation came from natural gas (2014 generation was 412 billion kWh greater than 2004), wind (increase of 168 billion kWh) and solar (increased 18 billion kWh). Over the same decade, annual generation from coal decreased 393 billion kWh, and from petroleum decreased 90 billion kWh.
In 2008 the average electricity tariff in the U.S. was 9.82 Cents/kilowatt-hour (kWh). In 2006-07 electricity tariffs in the U.S. were higher than in Australia, Canada, France, Sweden and Finland, but lower than in Germany, Italy, Spain, and the UK.
Residential tariffs vary significantly between states from 6.7 Cents/kWh in West Virginia to 24.1 Cents/kWh in Hawaii. The average residential bill in 2007 was US$100/month. Most investments in the U.S. electricity sector are financed by private companies through debt and equity.
However, some investments are indirectly financed by taxpayers through various subsidies ranging from tax incentives to subsidies for research and development, feed-in tariffs for renewable energy and support to low-income households to pay their electric bills.
Click on any of the following blue hyperlinks for more about the Electricity Sector of the United States:
The electricity sector of the United States includes a large array of stakeholders that provide services through electricity:
- generation,
- transmission,
- distribution
- and marketing
for industrial, commercial, public and residential customers. It also includes many public institutions that regulate the sector.
In 1996, there were 3,195 electric utilities in the United States, of which fewer than 1,000 were engaged in power generation. This leaves a large number of mostly smaller utilities engaged only in power distribution. There were also 65 power marketers. Of all utilities, 2,020 were publicly owned (including 10 Federal utilities), 932 were rural electric cooperatives, and 243 were investor-owned utilities.
The electricity transmission network is controlled by Independent System Operators or Regional Transmission Organizations, which are not-for-profit organizations that are obliged to provide indiscriminate access to various suppliers in order to promote competition.
The four above-mentioned market segments of the U.S. electricity sector are regulated by different public institutions with some functional overlaps: The federal government sets general policies through the Department of Energy, environmental policy through the Environmental Protection Agency and consumer protection policy through the Federal Trade Commission.
The safety of nuclear power plants is overseen by the Nuclear Regulatory Commission.
Economic regulation of the distribution segment is a state responsibility, usually carried out through Public Utilities Commissions; the inter-state transmission segment is regulated by the federal government through the Federal Energy Regulatory Commission.
Principal sources of US electricity in 2014 were:
- coal (39%),
- natural gas (27%),
- nuclear (19%),
- Hydro (6%),
- and other renewables (7%).
Over the decade 2004—2014, the largest increases in electrical generation came from natural gas (2014 generation was 412 billion kWh greater than 2004), wind (increase of 168 billion kWh) and solar (increased 18 billion kWh). Over the same decade, annual generation from coal decreased 393 billion kWh, and from petroleum decreased 90 billion kWh.
In 2008 the average electricity tariff in the U.S. was 9.82 Cents/kilowatt-hour (kWh). In 2006-07 electricity tariffs in the U.S. were higher than in Australia, Canada, France, Sweden and Finland, but lower than in Germany, Italy, Spain, and the UK.
Residential tariffs vary significantly between states from 6.7 Cents/kWh in West Virginia to 24.1 Cents/kWh in Hawaii. The average residential bill in 2007 was US$100/month. Most investments in the U.S. electricity sector are financed by private companies through debt and equity.
However, some investments are indirectly financed by taxpayers through various subsidies ranging from tax incentives to subsidies for research and development, feed-in tariffs for renewable energy and support to low-income households to pay their electric bills.
Click on any of the following blue hyperlinks for more about the Electricity Sector of the United States:
- Electricity consumption
- Electricity generation
- Energy efficiency and conservation
- Responsibilities in the electricity sector
- Economic and financial aspects
- See also:
- U.S. Department of Energy (DoE)
- Energy Information Administration
- Energy in the United States
- California electricity crisis (2001)
- Northeast Blackout of 2003
- Energy Information Administration
- List of largest power stations in the United States
- List of U.S. states by electricity production from renewable sources
Electric Batteries, including a List of Battery Types
- YouTube Video about How Batteries Work (by TedEd)
- YouTube Video: What are VOLTs, OHMs & AMPs?
- YouTube Video: Lithium-ion battery, How does it work?
Click here for a List of Batteries by Type.
A battery is a device consisting of one or more electrochemical cells with external connections for powering electrical devices such as flashlights, mobile phones, and electric cars. When a battery is supplying electric power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal.
When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy.
Historically the term "battery" specifically referred to a device composed of multiple cells, however the usage has evolved to include devices composed of a single cell.
Primary (single-use or "disposable") batteries are used once and discarded, as the electrode materials are irreversibly changed during discharge; a common example is the alkaline battery used for flashlights and a multitude of portable electronic devices.
Secondary (rechargeable) batteries can be discharged and recharged multiple times using an applied electric current; the original composition of the electrodes can be restored by reverse current. Examples include the lead-acid batteries used in vehicles and lithium-ion batteries used for portable electronics such as laptops and mobile phones.
Batteries come in many shapes and sizes, from miniature cells used to power hearing aids and wristwatches to small, thin cells used in smartphones, to large lead acid batteries or lithium-ion batteries in vehicles, and at the largest extreme, huge battery banks the size of rooms that provide standby or emergency power for telephone exchanges and computer data centers.
Batteries have much lower specific energy (energy per unit mass) than common fuels such as gasoline. In automobiles, this is somewhat offset by the higher efficiency of electric motors in converting chemical energy to mechanical work, compared to combustion engines.
Click on any of the following blue hyperlinks for more about Electric Batteries:
A battery is a device consisting of one or more electrochemical cells with external connections for powering electrical devices such as flashlights, mobile phones, and electric cars. When a battery is supplying electric power, its positive terminal is the cathode and its negative terminal is the anode. The terminal marked negative is the source of electrons that will flow through an external electric circuit to the positive terminal.
When a battery is connected to an external electric load, a redox reaction converts high-energy reactants to lower-energy products, and the free-energy difference is delivered to the external circuit as electrical energy.
Historically the term "battery" specifically referred to a device composed of multiple cells, however the usage has evolved to include devices composed of a single cell.
Primary (single-use or "disposable") batteries are used once and discarded, as the electrode materials are irreversibly changed during discharge; a common example is the alkaline battery used for flashlights and a multitude of portable electronic devices.
Secondary (rechargeable) batteries can be discharged and recharged multiple times using an applied electric current; the original composition of the electrodes can be restored by reverse current. Examples include the lead-acid batteries used in vehicles and lithium-ion batteries used for portable electronics such as laptops and mobile phones.
Batteries come in many shapes and sizes, from miniature cells used to power hearing aids and wristwatches to small, thin cells used in smartphones, to large lead acid batteries or lithium-ion batteries in vehicles, and at the largest extreme, huge battery banks the size of rooms that provide standby or emergency power for telephone exchanges and computer data centers.
Batteries have much lower specific energy (energy per unit mass) than common fuels such as gasoline. In automobiles, this is somewhat offset by the higher efficiency of electric motors in converting chemical energy to mechanical work, compared to combustion engines.
Click on any of the following blue hyperlinks for more about Electric Batteries:
- History
- Principle of operation
- Categories and types of batteries
- Capacity and discharge
- Lifetime
- Battery sizes
- Hazards
- Chemistry
- Solid-state batteries
- Homemade cells
- See also:
- Baghdad Battery
- Battery electric vehicle
- Battery holder
- Battery isolator
- Battery management system
- Battery nomenclature
- Battery pack
- Battery regulations in the United Kingdom
- Battery simulator
- Battery (vacuum tube)
- Comparison of battery types
- Depth of discharge
- Electric-vehicle battery
- Grid energy storage
- Nanowire battery
- Search for the Super Battery (2017 PBS film)
- State of charge
- State of health
- Trickle charging
- Batteries at Curlie
- Non-rechargeable batteries
- HowStuffWorks: How batteries work
- Other Battery Cell Types
- DoITPoMS Teaching and Learning Package- "Batteries"
- The Physics arXiv Blog (17 August 2013). "First Atomic Level Simulation of a Whole Battery | MIT Technology Review". Technologyreview.com. Retrieved 21 August 2013.